首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是n阶实对称矩阵,满足A2一3A+2E=0,且B=A2一2A+3E. (Ⅰ)求B-1; (Ⅱ)证明:B正定.
已知A是n阶实对称矩阵,满足A2一3A+2E=0,且B=A2一2A+3E. (Ⅰ)求B-1; (Ⅱ)证明:B正定.
admin
2016-05-03
101
问题
已知A是n阶实对称矩阵,满足A
2
一3A+2E=0,且B=A
2
一2A+3E.
(Ⅰ)求B
-1
;
(Ⅱ)证明:B正定.
选项
答案
由题设A
2
一3A+2E=0,得A
2
=3A一2E.代入B,得 B=A
2
—2A+3E=3A一2E一2A+3E=A+E. 又 A
2
一3A+2E=(A+E)(A一4E)+6E=O,即(A+E)[一[*](A一4E)]=E, 得B=A+E可逆,且B
-1
=一[*](A一4E). (Ⅱ)[证]B
T
=(A
2
—2A+3E)
T
=B,B是实对称矩阵. A
2
一3A+2E=0两边右乘A的特征向量ξ,得(λ
2
一3λ+2)ξ=0,又ξ≠0,则λ=1或2.故A的特征值只能取值为1或2.B=A+E的特征值只能取值为2或3,均大于零,故B正定. 或B=A
2
一2A+3E=(A—E)
2
+2E,由正定矩阵的定义即得证B正定.
解析
转载请注明原文地址:https://kaotiyun.com/show/51T4777K
0
考研数学三
相关试题推荐
党的统一战线政策是在同各种错误倾向作斗争中制定和完善起来的,而“一切经过统一战线,一切服从统一战线”的观点所体现的倾向就是党必须反对()。
在突如其来的新冠肺炎疫情面前,人们没有退缩避让,而是团结起来、行动起来。有人来不及道别,留给孩子一个背影;有人没时间寒暄,留给亲人一封家书;有人顾不得疲惫,收拾包裹奔赴一线……无论在哪个工作岗位、无论何种职业身份,无数人舍小家为大家、舍小我顾大局。一切为了
某数学家有两盒火柴,每一盒装有N根.每次使用时,他在任一盒中取一根,问他发现一盒空,而另一盒还有k根火柴的概率是多少?
设A是n×m矩阵,B是m×n矩阵,其中n
设β,α1,α2线性相关,β,α2,α3线性无关,则().
将函数f(x)=e2x,x∈[0,π]展开成余弦级数.
将一平面薄板铅直浸没于水中,取x轴铅直向下,y轴位于水面上,并设薄板占有xOy面上的闭区域D,试用二重积分表示薄板的一侧所受到的水压力.
在求直线l与平面Ⅱ的交点时,可将l的参数方程x=xo+mt,y=yo+nt,z=zo+pt代入Ⅱ的方程Ax+By+Cz+D=0,求出相应的t值.试问什么条件下,t有唯一解、无穷多解或无解?并从几何上对所得结果加以说明.
在区间[1,e]上求一点ε,使得如图30所示的阴影部分的面积为最小.
设A,B为同阶方阵,(1)如果A,B相似,试证A,B的特征多项式相等.(2)举一个二阶方阵的例子说明(1)的逆命题不成立.(3)当A,B均实对称矩阵时,试证(1)的逆命题成立.
随机试题
A、Thebirdwasdead.B、Thebirdwasalive.C、It’shardtoanswerthequestion.D、Hefoundoutthechildren’strick.D
病理性中性粒细胞增多常见于以下哪些疾病
甲、乙双方因工程款纠纷引发诉讼,案件经过两级法院审理终结。由于对二审判决结果不服,甲欲向上一级人民法院申请再审。甲提出的下列事实和理由不能得到法院准许的有()。
根据《建设工程质量管理条例》的规定,设计单位应当参与建设工程()分析,并提出相应的技术处理方案。
注册会计师可以利用检查文件资料的程序来进行控制测试和实质性程序,但在不同种类的测试中,检查的对象是不同的。( )分析程序具有很强的预期性,它不仅可以帮助注册会计师发现财务报表中的已发生的异常变化,或者预期发生而未发生的变化,还可以帮助注册会计师发现财
对于一般中暑旅游者,可将其置于阴凉通风处、能时让其饮用含盐饮料、解开衣领,放松裤带。()
随着商品流通,贸易往来、人际交流的越来越______,远古时代那种依靠步行的交通方式以及手提、肩扛、头顶的运输方式已很难适应社会发展的需要,于是交通运输设施的兴建与运输工具的制造便_______。
1/2,1/3,3/10,2/7,5/18,()
我国现行宪法规定,全国人大常委会的组成人员中,应当有适当名额的()。
A、Hecan’texplaintheinstructionsclearly.B、Hespeakstoofast.C、Hedoesn’tunderstandtheinstructionsclearly.D、Heisde
最新回复
(
0
)