首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明4arctanx —x+=0恰有两个实根。
证明4arctanx —x+=0恰有两个实根。
admin
2017-12-29
105
问题
证明4arctanx —x+
=0恰有两个实根。
选项
答案
令f(x)=4arctanx —x+[*]。则有 [*] 又因为[*]=一∞,根据介值定理可知,存在ξ∈([*],+∞),使得f(ξ)=0。且当x>[*]时,f’(x)<0,f(x)单调下降,可得x=ξ是区间([*],+∞)内的唯一一个实根。 因此4arctanx —x+[*]=0恰有两个实根x=[*]与x=ξ。
解析
转载请注明原文地址:https://kaotiyun.com/show/5GX4777K
0
考研数学三
相关试题推荐
作函数的图形
设f(x),g(x)在[a,b]上二阶可导,且f(A)=f(b)=g(A)=0.证明:∈(a,b),使f"(ξ)g(ξ)+2f’(ξ)g’(ξ)+f(ξ)g"(ξ)=0.
设f(x)=x3+4x2一3x一1,试讨论方程f(x)=0在(一∞,0)内的实根情况.
设{Xn}是一随机变量序列,Xn的密度函数为:
f(x)在[0,1]上连续,(0,1)内可导,且f(1)=.证明:至少存在一点ξ∈(0,1),使f’(ξ)=(1一ξ-1)f(ξ).
设f(x)在[a,b]上连续且严格单调增加.证明:(a+b)∫abf(x)dx<2∫abxf(x)dx.
设有两个非零矩阵A=[α1,α2,…,αn]T,B=[b1,b2,…,bn]T.设C=E一ABT,其中E为n阶单位阵.证明:CTC=E—BAT—ABT+BBT的充要条件是ATA=1.
方程组的通解是________.
设函数y=f(x)由参数方程(t>一1)所确定,其中φ(t)具有二阶导数,且已知证明:函数φ(t)满足方程=3(1+t).
设平面区域D由曲线及直线y=0,x=1,x=e2所围成,二维随机变量(X,Y)在区域D上服从均匀分布,则(X,Y)关于X的边缘概率密度在x=2处的值为_____.
随机试题
设计名为mystock的表单(控件名,文件名均为mystock)。表单的标题为:“股票持:有情况”。表单中有两个文本框(text1和text2)和两个命令按钮即“查询”(名称为Command1)和“退出”(名称为Command2)。运行表单时,在文
这个地面标记的含义是预告前方设有交叉路口。
铣床主轴轴向窜动的公差是__________mm。
糖尿病的基本生理变化是()
城市的区位结构不涉及以下哪一项?()
对求助者的尊重不包含()。
Oneofthemostremarkablethingsaboutthehumanmindisourabilitytoimaginethefuture.Inour【C1】______wecanseewhathas
为了落实“最多跑一趟”,解决群众“烦、急、累”的情绪,让你去征求意见,保证准确性,你会重点从哪几个方面开展?
Whatisthepassagemainlyabout?Thephrase"throwone’sweightaround"(Paragraph2)probablymeans______.
资本有机构成是指
最新回复
(
0
)