首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a,b,c>0,在椭球面的第一卦限部分求一点,使得该点处的切平面与三个坐标面所围成的四面体的体积最小.
设a,b,c>0,在椭球面的第一卦限部分求一点,使得该点处的切平面与三个坐标面所围成的四面体的体积最小.
admin
2019-01-23
33
问题
设a,b,c>0,在椭球面
的第一卦限部分求一点,使得该点处的切平面与三个坐标面所围成的四面体的体积最小.
选项
答案
先写出椭球面上[*]点(x,y,z)处的切半面方程,然后求出它在三条坐标轴上的截距,由此可写出四面体的体积表达式V(x,y,z).问题化为求V(x,y,z)在条件[*]下的最小值点. 将椭球面方程改写成G(x,y,z)[*] [*]椭球面第一卦限部分上[*]点(x,y,z)处的切平面方程是 [*] 其中(X.Y.Z)为切平面上任意点的坐标. 分别令Y=Z=0,Z=X=0,X=Y=0,得该切平面与三条坐标轴的交点分别为 [*] 四面体的体积为V(x,y,z)=[*] 为了简化计算,问题转化成求V
0
=xyz(x>0,y>0,z>0)在条件[*]下的最大值点. 令F(x,y,z,λ)=xyz+[*],求解方程组 [*] 因实际问题存在最小值,因此椭球面上点(x,y,z)=[*]处相应的四面体的体积最小.
解析
转载请注明原文地址:https://kaotiyun.com/show/5MM4777K
0
考研数学一
相关试题推荐
已知以2π为周期的周期函数f(x)在(一∞,+∞)上有二阶导数,且f(0)=0.设F(x)=(sinx-1)2f(x),证明:x0∈使得F’’(x0)=0.
设三阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(-1,2,-3)T都是λ属于λ=6的特征向量,求矩阵A。
设幂级数在x=0处收敛,在x=2b处发散,求幂级数的收敛半径R与收敛域,并分别求幂级数的收敛半径.
设二维随机变量(U,V)~N(2,2;4,1;),记X=U一bV,Y=V.(Ⅰ)问当常数b为何值时,X与Y独立?(Ⅱ)求(X,Y)的密度函数f(x,y).
求与A=可交换的矩阵.
设随机变量X,Y相互独立,且X~,Y~E(4),令U=X+2Y,求U的概率密度.
试求z=f(x,y)=x3+y3一3xy在矩形闭域D={(x,y)|0≤x≤2,一1≤y≤2}上的最大值、最小值.
求幂级数的收敛域.
设有幂级数2+.证明此幂级数满足微分方程y’’一y=一1;
设直线y=kx与曲线y=所围平面图形为D1,它们与直线x=1围成平面图形为D2。求k,使得D1与D2分别绕x轴旋转一周成旋转体体积V1与V2之和最小,并求最小值;
随机试题
素体气虚,反复外感,治宜益气解袭,此属:()
在Windows环境下资源管理器中可以同时打开几个文件夹。()
纠正代谢性酸中毒时,应注意防治的电解质紊乱是
()合起来叫外部设备。
企业在向市场推出新产品时,其价格远远高于成本,希望在短期内回收成本和获得最大的销售利润的方法,这种方法叫做()。
阅读下面材料,回答问题。中国人民银行8月11日公布的数据显示,2009年1~7人民币各项贷款增加7.73万亿元,同比多增4.89万亿元。2009年7月末,广义货币供应量(M2)余额为57.30万亿元,同比增长28.42%,增幅比上年末高10.6个百分点
犯罪人在新的刑法规定实施前犯罪,在新的刑法规定实施后受到追诉的,在适用新旧哪种刑法的问题上,我国遵循()。
Globalwarmingisalreadycuttingsubstantiallyintopotentialcropyieldsinsomecountries—tosuchanextentthatitmaybea
WhichofthefollowingistheacceptabletablemannerinBritain?
Thewritersuggeststhatactiontakenagainstplasticbags
最新回复
(
0
)