首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶非零矩阵,且存在自然数k,使得Ak=O,证明:A不可以对角化.
设A为n阶非零矩阵,且存在自然数k,使得Ak=O,证明:A不可以对角化.
admin
2017-08-31
62
问题
设A为n阶非零矩阵,且存在自然数k,使得A
k
=O,证明:A不可以对角化.
选项
答案
方法一 令AX=λX(X≠0),则有A
k
X=λ
k
X,因为A
k
=O,所以λ
k
X=0,注意到X≠0,故λ
k
=0,从而λ=0,即矩阵A只有特征值0(n重). 因为r(OE—A)=r(A)≥1,所以方程组(OE-A)X=0的基础解系至多含n-1个线性无关的解向量,故矩阵A不可对角化. 方法二 设矩阵A可以对角化,即存在可逆阵P,使得P
-1
AP=[*]=O, 从而有λ
1
=λ
2
=…=λ
n
=0, 于是p
-1
AP=O,进一步得A=O,矛盾,所以矩阵A不可以对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/vGr4777K
0
考研数学一
相关试题推荐
设且B=P-1AP.求矩阵A的特征值与特征向量;
已知α1=(1,4,0,2)T,α2=(2,7,1,3)T,α3=(0,1,-1,a)T,β=(3,10,b,4)T.a,b取何值时,β不能由α1,α2,α3线性表出?
设λ1,λ2是矩阵A的两个特征值,对应的特征向量分别为α1,α2,则().
A是三阶矩阵,有特征值λ1=λ2=2,对应两个线性无关的特征向量为ξ1,ξ3,λ2=…2对应的特征向量是ξ3证明:任一三维非零向量β(β≠0)都是A2的特征向量,并求对应的特征值。
A是三阶矩阵,有特征值λ1=λ2=2,对应两个线性无关的特征向量为ξ1,ξ3,λ2=…2对应的特征向量是ξ3ξ2+ξ3是否是A的特征向量?说明理由;
已知矩阵只有一个线性无关的特征向量,那么矩阵A的特征向量是____________.
若矩阵相似于对角矩阵A,试确定常数a的值,并求可逆矩阵P使P﹣1AP=A.
(2001年试题,十)已知3阶矩阵A与三维向量x,使得向量组x,Ax,A2x线性无关,且满足A3x=3Ax一2A2x.计算行列式|A+E|.
设证明f(f(A)=A,并计算[B+f(f(A)]-1,其中B=
随机试题
乙企业当期净利润为600万元,投资收益为100万元,与筹资活动有关的财务费用为50万元,经营性应收项目增加75万元,经营性应付项目减少25万元。固定资产折旧为40万元,无形资产摊销为10万元。假设没有其他影响经营活动现金流量的项目,该企业当期经营活动产生的
HTML的中文名称是________。
下列哪项是隐私权的主体()
在人际传播技巧中,为说话技巧的是在人际传播技巧中,为听话技巧的是
原发性肝癌普查常先用
国际工程投标报价时,企业要根据自身的优劣势和招标项目的特点来确定报价策略,通常情况下报价需要适当降低一些的工程有()。
结构分析法是以财务报表中的某一总体指标为基础,计算其中各构成项目占总体指标的百分比,然后比较不同时期各项目所占百分比的增减变动趋势。其只能被用于单个客户有关指标的分析。()
下列各项中,不适用代扣代缴方式缴纳个人所得税的是()。
开中法
TheUKhasawell-respectedhighereducationsystemandsomeofthetopuniversitiesandresearchinstitutionsintheworld.Bu
最新回复
(
0
)