首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶非零矩阵,且存在自然数k,使得Ak=O,证明:A不可以对角化.
设A为n阶非零矩阵,且存在自然数k,使得Ak=O,证明:A不可以对角化.
admin
2017-08-31
38
问题
设A为n阶非零矩阵,且存在自然数k,使得A
k
=O,证明:A不可以对角化.
选项
答案
方法一 令AX=λX(X≠0),则有A
k
X=λ
k
X,因为A
k
=O,所以λ
k
X=0,注意到X≠0,故λ
k
=0,从而λ=0,即矩阵A只有特征值0(n重). 因为r(OE—A)=r(A)≥1,所以方程组(OE-A)X=0的基础解系至多含n-1个线性无关的解向量,故矩阵A不可对角化. 方法二 设矩阵A可以对角化,即存在可逆阵P,使得P
-1
AP=[*]=O, 从而有λ
1
=λ
2
=…=λ
n
=0, 于是p
-1
AP=O,进一步得A=O,矛盾,所以矩阵A不可以对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/vGr4777K
0
考研数学一
相关试题推荐
已知矩阵只有一个线性无关的特征向量,那么矩阵A的特征向量是____________.
设,试证明:级数条件收敛.
若矩阵相似于对角矩阵A,试确定常数a的值,并求可逆矩阵P使P﹣1AP=A.
假设f(x)在[a,+∞)上连续,f’’(x)在(a,+∞)内存在且大于零,记F(x)=,证明:F(x)在(a,+∞)内单调增加.
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(I)AX=0和(Ⅱ)ATAX=0必有()
设四阶矩阵B=,且矩阵A满足关系式A(E-C-1B)TCT=E,其中E为四阶单位矩阵,C-1表示C的逆矩阵,CT表示C的转置矩阵,将上述关系式化简并求矩阵A.
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.求α1,α2,α3,α4应满足的条件;
设A是n阶矩阵,下列不是命题“0是矩阵A的特征值”的充分必要条件的是().
齐次方程组的系数矩阵为A,若存在三阶矩阵B≠O,使得AB=O,则().
设A为n阶非零矩阵,A*是A的伴随矩阵,AT是A的转置矩阵,当A*=AT时,证明丨A丨≠0.
随机试题
中外领导人的专职秘书财务辅助的范围
关于初产妇第一产程宫口扩张曲线说法正确的是
根据我国施工合同示范文本,下列各项中不属于设计变更的是()
()负责制定、定期审查和监督落实银行业消费者权益保护工作的措施、程序以及具体的操作规程,推动银行业消费者权益保护工作积极、有序开展。
公安机关是刑事诉讼中的审查机关。()
1.2015年年底至2016年4月期间,刚刚搬到新校址的某外国语学校部分学生不断出现各种不良反应和疾病。学生家长调查发现,学校北面有一片工地,原本有三家化工厂,化工厂生产的大量氯苯、环芳烃、汞、镉等污染物严重超标,导致所在地块成为“毒地”。近年来
以下关于英美背景知识描述有误的一项是()。
"Youneedanapartmentaloneevenifit’soveragarage,"declaredHelenGurleyBrowninher1962bestseller"SexandtheSingle
(36)一经各方商定同意纳入经济合同中,就成为各方必须共同遵守的技术依据,具有法律上的约束性。
In1957adoctorinSingaporenoticedthathospitalsweretreatinganunusualnumberofinfluenza-likecases.Influenzaissomet
最新回复
(
0
)