首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶非零矩阵,且存在自然数k,使得Ak=O,证明:A不可以对角化.
设A为n阶非零矩阵,且存在自然数k,使得Ak=O,证明:A不可以对角化.
admin
2017-08-31
60
问题
设A为n阶非零矩阵,且存在自然数k,使得A
k
=O,证明:A不可以对角化.
选项
答案
方法一 令AX=λX(X≠0),则有A
k
X=λ
k
X,因为A
k
=O,所以λ
k
X=0,注意到X≠0,故λ
k
=0,从而λ=0,即矩阵A只有特征值0(n重). 因为r(OE—A)=r(A)≥1,所以方程组(OE-A)X=0的基础解系至多含n-1个线性无关的解向量,故矩阵A不可对角化. 方法二 设矩阵A可以对角化,即存在可逆阵P,使得P
-1
AP=[*]=O, 从而有λ
1
=λ
2
=…=λ
n
=0, 于是p
-1
AP=O,进一步得A=O,矛盾,所以矩阵A不可以对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/vGr4777K
0
考研数学一
相关试题推荐
设3阶对称矩阵A的特征向量值λ1=1,λ2=2,λ3=-2,又a1=(1,-1,1)T是A的属于λ1的一个特征向量,记B=A5-4A3+E,其中E为3阶单位矩阵.(I)验证a1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩
已知α1=(1,4,0,2)T,α2=(2,7,1,3)T,α3=(0,1,-1,a)T,β=(3,10,b,4)T.a,b取何值时,β可由α1,α2,α3线性表出?并写出此表示式.
已知α1=(1,4,0,2)T,α2=(2,7,1,3)T,α3=(0,1,-1,a)T,β=(3,10,b,4)T.a,b取何值时,β不能由α1,α2,α3线性表出?
设,试证明:级数条件收敛.
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(I)AX=0和(Ⅱ)ATAX=0必有()
设有向曲面S:z=x2+y2,x≥0,y≥0,z≤1,法向量与z轴正向夹角为钝角.求第二型曲面积分
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.求向量组α1,α2,α3,α4的一个极大线性无关组,并把其他向量用该极大线性无关组
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.求α1,α2,α3,α4应满足的条件;
设A为n阶非零矩阵,A*是A的伴随矩阵,AT是A的转置矩阵,当A*=AT时,证明丨A丨≠0.
随机试题
A.麻醉药品B.一类精神药品C.二类精神药品D.处方药E.非处方药专用处方保存三年备查的药品是
(2010年)百年一遇的洪水,是指()。
协调处理现场周围的保护工作是( )的义务。
计算单位工程的工程量应按( )计算。
秦先生目前在某咨询公司任项目经理,月薪税前1.5万人民币,按15%缴纳三险一金,年底约有税前15万元的奖金收入。秦太太是幼儿园教师,工作稳定,每月收入税后3500元。二人目前均为32岁,2005年结婚,2005年6月首付15万元,采用等额本息方式贷款购买了
导游人员在对儿童的接待中,下列说法正确的是()
包装策略主要包括()
税收是国家普遍采用的取得财政收人的形式,它与其他财政收入形式相比,具有()等形式特征。
Hisdogwas______byatrucklastnightanddiedimmediately.
Internetpiracyisdefinedas______.SalesofpiratedsoftwareovertheInternethasbeenencouragedbyallofthefollowingEX
最新回复
(
0
)