首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1999年)试证:当x>0时,(x2一1)lnx≥(x—1)2.
(1999年)试证:当x>0时,(x2一1)lnx≥(x—1)2.
admin
2018-06-30
126
问题
(1999年)试证:当x>0时,(x
2
一1)lnx≥(x—1)
2
.
选项
答案
证l 令φ(x)=(x
2
一1)lnx一(x—1)
2
,易知φ(1)=0, [*] φ’(1)=0 [*] 则φ(x)在x=1取得极小值. 又x=1是φ(x)在(0,+∞)唯一的极值点,则φ(x)在x=1取得在区间(0,+∞)上的最小值. 又φ(1)=0,则当x>0时,φ(x)≥0,即 (x
2
一1)lnx≥(x—1)
2
证2 令[*] 则 [*] φ(1)=0,所以当0<x<1时,φ(x)<0,当1<x<+∞时,φ(x)>0,于是x>0时,(x
2
—1)φ(x)=(x
2
一1)lnx一(x
2
一1)≥0,即 (x
2
一1)Inx≥(x一1)
2
证3 由拉格朗日中值定理知[*]其中ξ介于1与x之间,即1<ξ<x或x<ξ<1,所以总有0<ξ<1+x从而[*]于是当x>0时 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/5Rg4777K
0
考研数学一
相关试题推荐
设X为随机变量,E|X|r(r>0)存在,试证明:对任意ε>0有
设f(x)在(-∞,+∞)上可导,且其反函数存在为g(x).若则当-∞<x<+∞时f(x)=________
微分方程的特解是________
计算曲面积分其中∑为上半球面的上侧.
设y=f(x)为区间[0,1]上的非负连续函数.(1)证明存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;(2)设f(x)在(0,1)内可导,且f’(x)>—,
设X~N(μ,σ2),其分布函数为F(x),对任意实数a,讨论F(一a)+F(a)与1的大小关系.
设f(x)∈C[a,b],在(a,b)内二阶可导,且f"(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫abφ(x)dx=1.证明:∫abf(x)φ(x)dx≥f[∫abxφ(x)dx].
(2001年)求
(1995年)假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g"(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证:在开区间(a,b)内至少存在一点ξ,使
[2001年]设y=f(x)在(一1,1)内具有二阶连续导数,且f’’(x)≠0.试证:对于(一1,1)内任一x≠0,存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf’(θx)成立;
随机试题
在一般的企业管理方法中,属于经济方式的是()
一般认为我国现代病案管理的起始时间是
具有1-苄基四氢异喹啉结构的肌松药具雄甾烷母棱的松药
【背景资料】 某有掩护港池内的顺岸重力式方块码头需沿前沿线接长250m,拟新接长码头的后方为已填筑的陆域场地,纵深大于200m,新建码头基槽长260m,其断面以及与原码头的衔接处平面如图1、图2所示。某施工单位承揽了该挖泥工程,根据土质和船机调配情况,
某市甲木制品厂为增值税一般纳税人,2013年6月发生以下业务:(1)从某林场收购自产原木一批,收购凭证上注明收购价款200000元;(2)该厂将收购的原木从收购地直接运往异地的乙加工厂生产加工实木复合地板,实木复合地板加工完毕,支付了加
贷款档案的保管期限自贷款结清(核销)后的第()年起计算。
(2018·河北)同学们学习一段时间舞蹈动作,刚开始进步很快,但一段时间后进步不明显,甚至停滞不前,这在技能练习上称为()(常考)
杜威的教育思想集中反映在他的()中。
1956年4月,毛泽东首次提出探索适合我国国情的社会主义建设道路的著作是
算法一般都可以用哪几种控制结构组合而成______。
最新回复
(
0
)