首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[0,1]上连续,在(0,1)上可导,且f(0)=f(1)=0,若f(χ)在[0,1]上的最大值为M>0设n>1,证明: (Ⅰ)存在c∈(0,1),使得f(c)=; (Ⅱ)存在互不相同的ξ,η∈(0,1),使得
设f(χ)在[0,1]上连续,在(0,1)上可导,且f(0)=f(1)=0,若f(χ)在[0,1]上的最大值为M>0设n>1,证明: (Ⅰ)存在c∈(0,1),使得f(c)=; (Ⅱ)存在互不相同的ξ,η∈(0,1),使得
admin
2017-11-30
64
问题
设f(χ)在[0,1]上连续,在(0,1)上可导,且f(0)=f(1)=0,若f(χ)在[0,1]上的最大值为M>0设n>1,证明:
(Ⅰ)存在c∈(0,1),使得f(c)=
;
(Ⅱ)存在互不相同的ξ,η∈(0,1),使得
选项
答案
(Ⅰ)根据已知条件,存在a∈(0,1],使得f(a)=M。令 F(χ)=f(χ)-[*], 显然F(χ)在[0,1]上连续,又因为f(0)=0,n>1,故 [*] 由零点定理可知,至少存在一点c∈(0,a),使得F(c)=f(c)-[*]=0,即f(c)=[*]。 (Ⅱ)在[0,c],[c,1]上分别使用拉格朗日中值定理。已知f(χ)在[0,1]上连续,在 f(1)-f(c)=(1-c)f′(η) (2) 由(1).f′(η)+(2).f′(ξ),结合f(0)=f(1)=0可得, [f′(η)-f′(ξ)]f(c)=f′(ξ)f′(η), 再由结论f(c)=[*]可知, [f′(η)-f′(ξ)][*]=f′(ξ)f′(η), 即[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/5fr4777K
0
考研数学一
相关试题推荐
求下列函数的导数:(1)(a>0);(2)y=ef(x).f(ex);(3)(4)设f(t)具有二阶导数,求f(f’,(x)),f(f(x)))’.
过直线且和点(2,2,2)的距离为的平面方程是_______.
已知向量的始点A(4,0,5),的方向余弦为则B的坐标为()
设二维随机变量(X,Y)的联合密度函数为求随机变量X,Y的边缘密度函数;
设随机变量X1,X2,X3,X4独立同分布,且(i=1,2,3,4),求X=的概率分布.
甲、乙两船驶向不能同时停靠两条船的码头,它们一天到达时间是等可能的,如果甲停靠,则停靠的时间为1小时,若乙停靠,则停靠的时间为2小时,求它们不需要等候的概率.
|A|是n阶行列式,其中有一行(或一列)元素全是1,证明:这个行列式的全部代数余子式的和等于该行列式的值.
设l为从点A(-π,0)沿曲线y=sinx至点B(π,0)的有向弧段,求I=∫l(e-x2sinx+3y-cosy)dx+(xsiny-y4)dy.
设f(x)在区间(一∞,+∞)上连续且严格单调增加,又设则φ(x)在区间(一∞,+∞)上()
从一批轴料中取15件测量其椭圆度,计算得S=0.025,问该批轴料椭圆度的总体方差与规定的σ2=0.0004有无显著差别?(a=0.05,椭圆度服从正态分布)
随机试题
符合DNA双螺旋结构的正确描述是
艾滋病最常见的恶性肿瘤是
下列关于我国《刑法》规定的适用数罪并罚情况,说法不正确的有()。
自校准是指在实验室或其所在组织内部实施的,使用自有的设施和测量标准,校准结果仅用于内部需要,为实现获认可的检测活动相关的测量设备的量值溯源而实施的校准()。
金属铸造是将熔融的金属注入、压入或吸入铸模的空腔中使之成型的加工方法。铸造作业中存在着火灾及爆炸、灼烫、高温和热辐射等多种危险有害因素。因此,铸造作业应有完善的安全技术措施。下列关于浇注作业的安全措施中,正确的有()。
技术方案资本金以工业产权和非专利技术作价出资的比例一般不超过技术方案资本金总额的()。
办理人境动物及动物产品报检时应提供:()
传播计算机病毒的一大可能途径是_______。
Today’sWorldismainlyabout______.
Itisacommonplaceamongmoraliststhatyoucannotgethappinessbypursuingit.Thisisonlytrueifyoupursueit【C1】______.
最新回复
(
0
)