首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[0,1]上连续,在(0,1)上可导,且f(0)=f(1)=0,若f(χ)在[0,1]上的最大值为M>0设n>1,证明: (Ⅰ)存在c∈(0,1),使得f(c)=; (Ⅱ)存在互不相同的ξ,η∈(0,1),使得
设f(χ)在[0,1]上连续,在(0,1)上可导,且f(0)=f(1)=0,若f(χ)在[0,1]上的最大值为M>0设n>1,证明: (Ⅰ)存在c∈(0,1),使得f(c)=; (Ⅱ)存在互不相同的ξ,η∈(0,1),使得
admin
2017-11-30
65
问题
设f(χ)在[0,1]上连续,在(0,1)上可导,且f(0)=f(1)=0,若f(χ)在[0,1]上的最大值为M>0设n>1,证明:
(Ⅰ)存在c∈(0,1),使得f(c)=
;
(Ⅱ)存在互不相同的ξ,η∈(0,1),使得
选项
答案
(Ⅰ)根据已知条件,存在a∈(0,1],使得f(a)=M。令 F(χ)=f(χ)-[*], 显然F(χ)在[0,1]上连续,又因为f(0)=0,n>1,故 [*] 由零点定理可知,至少存在一点c∈(0,a),使得F(c)=f(c)-[*]=0,即f(c)=[*]。 (Ⅱ)在[0,c],[c,1]上分别使用拉格朗日中值定理。已知f(χ)在[0,1]上连续,在 f(1)-f(c)=(1-c)f′(η) (2) 由(1).f′(η)+(2).f′(ξ),结合f(0)=f(1)=0可得, [f′(η)-f′(ξ)]f(c)=f′(ξ)f′(η), 再由结论f(c)=[*]可知, [f′(η)-f′(ξ)][*]=f′(ξ)f′(η), 即[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/5fr4777K
0
考研数学一
相关试题推荐
已知f(x)的一个原函数为(1+sinx)lnx,求∫xf’(x)dx.
设则有()
计算
设函数,证明:存在常数A,B,使得当x→0+时,恒有f(x)=e+Ax+Bx2+o(x2),并求常数A,B.
甲、乙两船驶向不能同时停靠两条船的码头,它们一天到达时间是等可能的,如果甲停靠,则停靠的时间为1小时,若乙停靠,则停靠的时间为2小时,求它们不需要等候的概率.
设A是三阶矩阵,λ1=1,λ2=2,λ3=3是A的特征值,对应的特征向量分别是ξ1=[2,2,一1]T,ξ2=[一1,2,2]T,ξ3=[2,一1,2]T.又β=[1,2,3]T,计算:(1)Anξ;(2)Anβ.
设a1,a2,…,am为正数(m≥2),则=_________。
设则f(x,y)在点0(0,0)处()
设f(x)为非负连续函数,且满足f(x)f(x-t)dt=sin4x,求f(x)在[0,]上的平均值.
随机试题
金属在固态下,随温度变化由一种晶格转变为另一种晶格的现象,称为()。
Itisawisefatherthatknowshisownchild,buttodayamancanboosthispaternal(fatherly)wisdom—oratleastconfirmtha
老年抑郁症的常见负性生活事件是
患者,男,33岁。腹股沟斜疝术后取仰卧位,腘窝下垫枕,最主要目的是
按规定.各会计核算单位使用定点开发的专用会计核算软件之前,使用的软件必须经过()。
个人从公开发行和转让市场取得的上市公司股票,持股期限在1个月以内的,其股息红利所得按()计人应纳税所得额。
2006年北京某基层社区设立社区卫生服务中心社区居民对卫生服务中心为谁服务存在不问想法。您认为其服务对象应是:()。
根据绩效考评的对象不同,绩效考评可分为()。
“外行看热闹,内行看门道”体现的是知觉的()。
包括在班杜拉总结的学习过程的环节是()。
最新回复
(
0
)