设f(χ)在[0,1]上连续,在(0,1)上可导,且f(0)=f(1)=0,若f(χ)在[0,1]上的最大值为M>0设n>1,证明: (Ⅰ)存在c∈(0,1),使得f(c)=; (Ⅱ)存在互不相同的ξ,η∈(0,1),使得

admin2017-11-30  48

问题 设f(χ)在[0,1]上连续,在(0,1)上可导,且f(0)=f(1)=0,若f(χ)在[0,1]上的最大值为M>0设n>1,证明:
    (Ⅰ)存在c∈(0,1),使得f(c)=
    (Ⅱ)存在互不相同的ξ,η∈(0,1),使得

选项

答案(Ⅰ)根据已知条件,存在a∈(0,1],使得f(a)=M。令 F(χ)=f(χ)-[*], 显然F(χ)在[0,1]上连续,又因为f(0)=0,n>1,故 [*] 由零点定理可知,至少存在一点c∈(0,a),使得F(c)=f(c)-[*]=0,即f(c)=[*]。 (Ⅱ)在[0,c],[c,1]上分别使用拉格朗日中值定理。已知f(χ)在[0,1]上连续,在 f(1)-f(c)=(1-c)f′(η) (2) 由(1).f′(η)+(2).f′(ξ),结合f(0)=f(1)=0可得, [f′(η)-f′(ξ)]f(c)=f′(ξ)f′(η), 再由结论f(c)=[*]可知, [f′(η)-f′(ξ)][*]=f′(ξ)f′(η), 即[*]

解析
转载请注明原文地址:https://kaotiyun.com/show/5fr4777K
0

最新回复(0)