首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(aij)是三阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式.若aij+Aij=0(i,j=1,2,3),则|A|=________.
设A=(aij)是三阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式.若aij+Aij=0(i,j=1,2,3),则|A|=________.
admin
2021-01-19
53
问题
设A=(a
ij
)是三阶非零矩阵,|A|为A的行列式,A
ij
为a
ij
的代数余子式.若a
ij
+A
ij
=0(i,j=1,2,3),则|A|=________.
选项
答案
应填=1.
解析
[分析] 根据已知条件易联想到利用重要公式AA
*
=|A|E.
[详解] 由a
ij
+A
ij
=0,有A
ij
=一a
ij
(i,j=1,2,3),得A
*
=-A
T
,于是
AA
*
=-AA
T
=|A|E,
两边取行列式得 -|A|
2
=|A|
3
,解得 |A|=-1或|A|=0.
当|A|=0时,由AA
T
=|A|E=0,有A=0,与已知矛盾,所以|A|=-1.
[评注] 也可以如下证明|A|≠0:由A为非零矩阵,不妨设a
11
≠0.于是,根据行列式的按行展开定理得
|A|=a
11
A
11
+a
12
A
12
+a
13
A
13
=-(a
11
2
+a
12
2
+a
13
2
)<0.
转载请注明原文地址:https://kaotiyun.com/show/5l84777K
0
考研数学二
相关试题推荐
设y=f(χ,t),且方程F(χ,y,t)=0确定了函数t=t(χ,y),求.
设f(x)在区间[一a,a](a>0)上具有二阶连续导数,f(0)=0.证明:在[一a,a]上存在η,使
设A是n阶非零矩阵,且A*=AT,证明:A可逆。
设向量组α1=(a,0,10)T,α2=(一2,1,5)T,α3=(一1,1,4)T,β=(1,b,c)T,试问:当a,b,c满足什么条件时,回答下列问题:β可由α1,α2,α3线性表出,且表示唯一;
(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b—a);(Ⅱ)证明若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f+’(0)
设矩阵且|A|=一1,A的伴随矩阵A*有特征值λ0,属于λ0的特征向量为α=[一1,一1,1]T,求a,b,c及λ0的值.
计算行列式
若三阶方阵,试求秩(A).
(2003年试题,八)设位于第一象限的曲线y=f(x)过点其上任一点P(x,y)处的法线与),轴的交点为Q,且线段PQ被x轴平分.求曲线y=f(x)的方程;
已知,且f(0)=g(0)=0,试求
随机试题
进行法制教育时,小学生学习思想品德,初中生学习道德知识,高中生学习法律知识,而大学生学习维护权利。这体现了人的身心发展的()
下列DNA中,一般不用作克隆载体的是
以下哪项属于细脉的相似脉
合同是当事人双方之间签订的协议,只对签约当事人具有约束力,绝对不会对他人产生约束力。( )
写字楼的商务服务机构的组成包括()。
根据签约代表所代表的范围的不同,集体合同可分为()。
【2014年河北石家庄.单选】校园环境,规章制度,人际关系都属于()。
一位主妇将一对旧沙发丢弃了。另一位主妇将它们从外面拣回来并进行了修整,使这对沙发放在家中不仅实用,也很美观。因此()。
Doctor:______.Patient:I’vecaughtabadcoldandgotasourthroat.
A、 B、 C、 B
最新回复
(
0
)