首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知3阶矩阵A的第一行为(a,b,c),a,b,C不全为0,矩阵并且AB=0,求齐次线性方程组AX=0的通解.
已知3阶矩阵A的第一行为(a,b,c),a,b,C不全为0,矩阵并且AB=0,求齐次线性方程组AX=0的通解.
admin
2019-01-23
36
问题
已知3阶矩阵A的第一行为(a,b,c),a,b,C不全为0,矩阵
并且AB=0,求齐次线性方程组AX=0的通解.
选项
答案
由于AB=0,r(A)+r(B)≤3,并且B的3个列向量都是AX=0的解. (1)若k≠9,则r(B)=2,r(A)=1,AX=0的基础解系应该包含两个解.(1,2,3)
T
和(3,6,k)
T
都是解,并且它们线性无关,从而构成基础解系,通解为: c
1
(1,2,3)
T
+c
2
(3,6,k)
T
,其中c
1
,c
2
任意. (2)如果k=9,则r(B)=1,r(A)=1或2. ①r(A)=2,则AX=0的基础解系应该包含一个解,(1,2,3)
T
构成基础解系,通解为: c(1,2,3)
T
,其中c任意. ②r(A)=1,则AX=0的基础解系包含两个解,而此时曰的3个列向量两两相关,不能用其中的两个构成基础解系. 由r(A)=1,A的行向量组的秩为1,第一个行向量(a,b,c)(≠0!)构成最大无关组,因此第二,三个行向量都是(a,b,c)的倍数,从而AX=0和方程ax
1
+bx
2
+cx
3
=0同解.由于(1,2,3)
T
是解,有a+2b+3c=0,则a,b不都为0(否则a,b,c都为0),于是(b,一a,0)
T
也是ax
1
+bx
2
+cx
3
=0的一个非零解,它和(1,2,3)
T
线性无关,一起构成基础解系,通解为: c
1
(1,2,3)
T
+c
2
(b,一a,0)
T
,其中c
1
,c
2
任意.
解析
转载请注明原文地址:https://kaotiyun.com/show/60M4777K
0
考研数学一
相关试题推荐
设连接两点A(0,1),B(1,0)的一条凸弧,P(x,y)为凸弧AB上的任意点(图6.4).已知凸弧与弦AP之间的面积为x3,求此凸弧的方程.
求f(x)=的x3的系数.
讨论级数的敛散性.
设f(s)在(-∞,+∞)内有连续的导数,计算其中L为从点a(3,)到B(1,2)的直线段.
计算I=(x+3z2)dydz+(x3z2+yz)dzdx—3y2dxdy,其中∑为z=2一z=0上方部分的下侧.
已知函数u=u(x,y)满足方程试选择参数a,b,利用变换u(x,y)v(x,y)eax+by将原方程变形,使新方程中不出现一阶偏导数项.
某流水线上每个产品不合格的概率为p(0<p<1),各产品合格与否相对独立,当出现1个不合格产品时即停机检修.设开机后第1次停机时已生产了的产品个数为X,求X的数学期望E(X)和方差D(X).
证明可微的必要条件:设z=f(x,y)在点(x0,y0)处可微,则fx(x0,y0)fy(x0,y0)都存在,且=(x0,y0)=L(x0,y0)△x+fy(x0,y0)△y。
计算曲面积分(x3+z)dydz+(y3+x)dzdx+dxdy,其中∑是曲线(|x|≤1)绕x轴旋转一周所得到的曲面,取外侧.
5kg肥皂溶于300L水中后,以每分钟10L的速度向内注入清水,同时向外抽出混合均匀之肥皂水,问何时余下的肥皂水中只有1kg肥皂.
随机试题
一般认为,一个职业运动员在45岁时和他在30岁时相比,运动水平和耐力都会明显降低。但是在已退役与正在服役的职业足球运动员中举行的一场马拉松比赛结果却是,45岁的退役足球运动员和30岁的正在服役的运动员在比赛中的成绩没有什么差别。据此,认为一个职业球员到了4
女性,35岁,发现血压高3年,血压平时在150~170/80~100mmHg范围波动,数次阵发升高达210/130mmHg,伴头痛、心悸、恶心呕吐,常规降压效果不佳,平素出汗较多,低热,化验血糖空腹6.9mmol/L,餐后2小时10.5mmol/L。此病人
参与TD—Ag刺激机体产生抗体的细胞是
某患者前额部连接眉棱骨疼痛,头痛像要裂开一样,多属于()。
与共射放大电路相比,共集放大电路的特点是()。
下列选项中,不属于预警信息系统中信息辨伪方法的是()。
良好的现金内部控制制度要求收到现金和支出现金后当日或次日登记入账。()
图中“?”处应填入的最合适的数是()。
目前福建省高速公路已修建了2700多公里。随着里程的不断扩大,一些管理单位效益却在逐步下降。请你结合所报考职位回答,应该怎么办?
湘泸、辽沈、淮海三大战役的胜利,奠定了人民解放战争在全国胜利的基础。()
最新回复
(
0
)