首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是秩为3的4阶矩阵,α1,α2,α3是非齐次线性方程组Ax=b的三个解,若α1+α2+α3=(0,6,3,9)T,2α1-α3=(1,3,3,3)T,k为任意常数,则Ax=b的通解为( )
设A是秩为3的4阶矩阵,α1,α2,α3是非齐次线性方程组Ax=b的三个解,若α1+α2+α3=(0,6,3,9)T,2α1-α3=(1,3,3,3)T,k为任意常数,则Ax=b的通解为( )
admin
2016-04-29
112
问题
设A是秩为3的4阶矩阵,α
1
,α
2
,α
3
是非齐次线性方程组Ax=b的三个解,若α
1
+α
2
+α
3
=(0,6,3,9)
T
,2α
1
-α
3
=(1,3,3,3)
T
,k为任意常数,则Ax=b的通解为( )
选项
A、(0,6,3,9)
T
+k(1,1,2,0)
T
B、(0,2,1,3)
T
+k(-1,3,0,6)
T
C、(1,3,3,3)
T
+k(1,1,2,0)
T
D、(-1,3,0,6)
T
+ k(-2,0,-3,0)
T
答案
C
解析
本题考查非齐次线性方程组解的结构,属于基础题.
由r(A)=3,知齐次方程组Ax=0的基础解系只有一个解向量.
由非齐次线性方程组解的性质,知
(α
1
+α
2
+α
3
)-3(2α
2
-α
3
)=(α
1
-α
2
)+4(α
3
-α
2
)=(-3,-3,-6,0)
T
是Ax=0的解,所以Ax=0的基础解系为(1,1,2,0)
T
.
又
2α
2
-α
3
=α
2
+(α
2
-α
3
)=(1,3,3,3)
T
是Ax=b的解,所以Ax=b的通解为(1,3,3,3)
T
+k(1,1,2,0)
T
,故应选(C).
转载请注明原文地址:https://kaotiyun.com/show/62T4777K
0
考研数学三
相关试题推荐
1981年党的十一届六中全会通过的《中国共产党中央委员会关于建国以来党的若干历史问题的决议》指出:贯穿于毛泽东思想各个组成部分的立场、观点和方法,是毛泽东思想的活的灵魂,它们有三个基本方面,即()。
孙中山为了防止袁世凯专制而提出的条件有()。
习近平指出:“新冠肺炎疫情不可避免会对经济社会造成较大冲击。越是在这个时候,越要用全面、辩证、长远的眼光看待我国发展,越要增强信心、坚定信心。综合起来看,我国经济长期向好的基本面没有改变,疫情的冲击是短期的、总体上是可控的。只要我们变压力为动力、善于化危为
在中国传统道德的发展演化中,公私之辩始终是一条主线。“公义胜私欲”是中国传统道德的根本要求。下面体现这一要求的是()。
二次型f(x1,x2,x3)=x12+4x22+3x32-4x1x2+2x1x3+8x2x3的秩等于()。
设f(x)在[a,b]上连续,且f(x)>0,x∈[a,b],证明:(1)Fˊ(x)≥2;(2)方程F(x)=0在区间(a,b)内有且仅有一个根.
利用函数的凹凸性,证明下列不等式:
设函数z=f(x,-y)在点P(x,y)处可微,从x轴正向到向量l的转角为θ,从x轴的正向到向量m的转角为θ+π/2,求证:
设三阶矩阵三维列向量α=(0,1,1)T.已知Aα与α线性相关,则α=__________.
随机试题
下列关于“大一统”的金融体制说法不正确的是
呼吸衰竭最常见的病因是
诊断试验的特异性是指
颅内压增高患者昏迷,治疗呼吸道梗阻最有效措施是
甲乙共有店面一间,各有一半份额,产权证登记在甲一人名下。乙不在家,甲与丙签订书面租赁合同,租期四年,未办理租赁登记。当年,在丙租赁期间中,甲未通知乙、丙,就将该店面房出售给丁,并在该年的8月1日办理了所有权转移登记。某日,戊酒后驾车失控冲撞该店面,致丙所自
根据《测绘法》,省、自治区、直辖市和自治州、县、自治县、市行政区域界线的标准画法图,由()拟订,报国务院批准后公布。
加压送风口分为()。
会计核算软件设计应当符合我国()的规定,保证会计数据合法、真实、准确、完整、有利于提高会计核算工作效率。
在实际应用中,抵免法又分为()。
A、Sheisyoungerthanhersister.B、shedoesnotspendmuchtimewithhersister’schildren.C、shedoesnotgetalongwellwith
最新回复
(
0
)