首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2001年] 设A为n阶实对称矩阵,秩(A)=n,Aij是A=[aij]n×n中元素aij的代数余子式.二次型 二次型g(X)=XTAX与f(X)的规范形是否相同?说明理由?
[2001年] 设A为n阶实对称矩阵,秩(A)=n,Aij是A=[aij]n×n中元素aij的代数余子式.二次型 二次型g(X)=XTAX与f(X)的规范形是否相同?说明理由?
admin
2019-06-25
46
问题
[2001年] 设A为n阶实对称矩阵,秩(A)=n,A
ij
是A=[a
ij
]
n×n
中元素a
ij
的代数余子式.二次型
二次型g(X)=X
T
AX与f(X)的规范形是否相同?说明理由?
选项
答案
首先应注意,因合同变换不改变二次型的正惯性指数及负惯性指数,因而合同变换不改变二次型的规范形,即当两个二次型f(X)与g(X)的矩阵合同时,二次型f(X)与g(X)有相同的规范形.基于此,有下面三种方法证明f(X)与g(X)有相同的规范形. 解一 证f(X)与g(X)的矩阵合同.事实上,存在可逆矩阵A
-1
,使 (A
-1
)
T
AA
-1
=(A
-1
)
T
=(A
T
)
-1
=A
-1
. 于是g(X)=X
T
AX与f(X)=X
T
A
-1
X有相同的规范形. 解二 对二次型g(X)=X
T
AX作可逆的线性变换X=A
-1
Y,其中Y=[y
1
,y
2
,…,y
n
]
T
, 则g(X)=X
T
AX=(A
-1
Y)
T
AA
-1
Y=Y
T
(A
-1
)
T
AA
-1
y=Y
T
A
-1
Y.由此可知,A与A
-1
合同,则f(X)与g(X)必有相同的规范形. 解三 设A的全部特征值为λ
1
,λ
2
,…,λ
n
,则A
-1
的全部特征值为1/λ
1
,1/λ
2
,…,1/λ
n
.可见A与A
-1
的特征值中正与负的项数分别相同,因而二次型f(X)=X
T
A
-1
X与g(X)=X
T
AX的标准形中系数为正与负的项数分别相同,从而f(X)与g(X)有相同的正、负惯性指数,故它们有相同的规范形.
解析
转载请注明原文地址:https://kaotiyun.com/show/6TJ4777K
0
考研数学三
相关试题推荐
设随机变量X服从参数为2的泊松分布,令Y=4X一3,则E(y)=_________,D(Y)=___________,
10件产品有3件次品,7件正品,每次从中任取1件,取后不放回,求下列事件的概率:第三次才取得次品;
设b>a>0,证明:
设直线y=kx与曲线所围平面图形为D1,它们与直线x=1同成平面图形为D2.求k,使得D1与D2分别绕x轴旋转一周成旋转体体积V1与V2之和最小,并求最小值;
确定常数a,c的值,使得其中c,为非零常数.
设X1,X2,…,X7是总体.X~N(0,4)的简单随机样本,求
设A为n阶实对称可逆矩阵,记X=(x1,x2,…,xn)T,把二次型f(x1,x2,…,xn)写成矩阵形式;
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵).求:|E+A+A2+…+An|的值.
判断级数的敛散性.
(2011年)曲线=ey在点(0,0)处的切线方程为______。
随机试题
关于黑素细胞的描述,哪项错误()
设计人提交初步设计文件后3日内,发包人应支付设计费总额的( )。
投资估算指标可分为下列()三个指标层次。
沟槽开挖遇坡顶无荷载时,()的坡度最缓。
在我国,基层人民政府可以依法设立的派出机关是()。
一切为了群众,()。
小方:“所有河南人都喜欢喝胡辣汤。”小圆:“李明就是河南人,他就不喜欢喝胡辣汤。”小方:“好吧,所有‘真正的’河南人都喜欢喝胡辣汤。”以下最准确指出小方论证中漏洞的是:
根据下列材料回答问题。据中国汽车工业协会统计分析,2013年上半年,中国品牌乘用车共销售356.67万辆,同比增长13.19%,结束上年下降趋势,占乘用车销售总量的41.16%,占有率较上年同期下降0.23个百分点。上半年。德系、日系、美系、韩系和法系乘
人内传播(华农2011研;湖南大学2010研;武汉理工2010研;南开大学2006研)
A、Shewasinterestedinlivingindifferentplaces.B、ShewantedtoknowmoreaboutJapaneseculture.C、Shewaspromotedbyher
最新回复
(
0
)