首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶矩阵A的各行元素之和都为2,又α1=(1,2,2)T和α2=(0,2,1)T分别是(A-E)X=0的(A+E)X=0的解. (1)求A的特征值与特征向量. (2)求矩阵A.
设3阶矩阵A的各行元素之和都为2,又α1=(1,2,2)T和α2=(0,2,1)T分别是(A-E)X=0的(A+E)X=0的解. (1)求A的特征值与特征向量. (2)求矩阵A.
admin
2016-10-21
72
问题
设3阶矩阵A的各行元素之和都为2,又α
1
=(1,2,2)
T
和α
2
=(0,2,1)
T
分别是(A-E)X=0的(A+E)X=0的解.
(1)求A的特征值与特征向量.
(2)求矩阵A.
选项
答案
(1)α
1
=(1,2,2)
T
是(A-E)X=0的解,即Aα
1
=α
1
,于是α
1
是A的特征向量,特征值为1. 同理得α
2
,是A的特征向量,特征值为-1. 记α
3
=(1,1,1)
T
,由于A的各行元素之和都为2,Aα
3
=(2,2,2)
T
=2α
3
,即α
3
也是A的特征向量,特征值为2. 于是A的特征值为1,-1,2. 属于1的特征向量为cα
1
,c≠0. 属于-1的特征向量为cα
2
,c≠0. 属于2的特征向量为cα
3
,c≠0. (2)建立矩阵方程A(α
1
,α
2
,α
3
)=(α
1
,-α
2
,2α
3
),用初等变换法求解: ((α
1
,α
2
,α
3
)
T
|(α
1
,-α
2
,2α
3
)
T
) [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/6Tt4777K
0
考研数学二
相关试题推荐
设f(x)是奇函数,除x=0外处处连续,x=0是其第一类间断点,则∫0xf(t)dt是________。
设f(x)=a1ln(1+x)+a2ln(1+2x)+…+anln(1+nx),其中a1,a2,…,an,为常数,且对一切x有|f(x)|≤|ex-1|.证明:|a1+2a2+…+nan|≤1.
计算xydδ,其中D是由曲线y2=x与直线y=x-2所围成的区域。
设f(u)可导,y=f(x2)在x0=-1处取得增量△x=0.05时,函数增量△y的线性部分为0.15,则f’(1)=________.
指出下列各题中的函数是否为所给微分方程的解。y"+y=0,y=3sinx-4cosx
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
齐次方程组的系数矩阵为A,若存在三阶矩阵B≠O,使得AB=O,则().
设3阶对称矩阵A的特征向量值λ1=1,λ2=2,λ3=-2,又α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.(I)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩阵B.
(2008年试题,22)设n元线性方程组Ax=b,其中(I)证明行列式|A|=(n+1)an;(Ⅱ)a为何值时,方程组有唯一解?求x1;(Ⅲ)a为何值时,方程组有无穷多解?求通解.
(1)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b—a).(2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且,则f+’(0)存在,且f+’
随机试题
《劝掌篇》
骨盆骨折合并尿道损伤和休克时,处理顺序应是( )。
龋病最好发的牙位是
男性,44岁,门脉高压病史2年,伴有黄疸,大量腹水,血清白蛋白25g/L,病人突然出现呕血1小时,出血量大约600ml。如果该病人采用三腔管压迫止血,使用时的注意事项包括以下几方面,错误的是
A.裂片(顶裂)B.松片C.黏冲D.片重差异超限E.崩解迟缓颗粒的弹性复原率较高时,易发生()。
水泥混凝土路面纵向裂缝的预防措施有()。
甲国所得已纳税款扣除限额为( )万元。乙国所得已纳税款可扣除( )万元。
国债的利率与票面价格固定不变,认购者根据固定的利率和未来的金融市场利率走势的预期对价格进行投标的方法是()。
直角三角形ABC的斜边AB=13厘米,直角边AC=5厘米,把AC对折到AB上去与斜边相重合,点C与点E重合,折痕为AD(如图14—2),则图中阴影部分的面积为()平方厘米。
Scholarsandstudentshavealwaysbeengreattravelers.Theofficialcasefor"academicmobility"isnowoftenstatedinimpress
最新回复
(
0
)