首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x,y)=x3+y3=3x2-3y2,求f(x,y)的极值及其在x2+y2≤16上的最大值.
设f(x,y)=x3+y3=3x2-3y2,求f(x,y)的极值及其在x2+y2≤16上的最大值.
admin
2017-10-25
50
问题
设f(x,y)=x
3
+y
3
=3x
2
-3y
2
,求f(x,y)的极值及其在x
2
+y
2
≤16上的最大值.
选项
答案
根据题意可得 [*] 解得x
1
=0,x
2
=2,y
1
=0,y
2
=2. 即共有4个极值可疑点:(0,0),(0,2),(2,0),(2,2). 又因为 [*] 则在点(0,0)处, B
2
-AC=0-(-6)×(-6)=-36<0且A=-6<0. 所以点(0,0)是一个极大值点且极大值为f(0,0)=0. 同理,f(2,2)=-8是一个极小值;而f(0,2)与f(2,0)不是极值. 由上面讨论可知,f(x,y)在闭域D上的最大值,若在D内达到,必是在(0,0)点取得,但也可能在D的边界上,故建立拉格朗日函数. 令 L(x,y,λ)=x
3
+y
3
-3x
2
-3y
2
+λ(x
2
+y
2
-16), 则有 [*] 解得:x=0,y=4或x=4,y=0或x=[*] 因此f(x,y)在D上的最大值为 [*]
解析
先求出函数f(x,y)在区域D:x
2
+y
2
≤16内的极值可疑点(x
i
,y
i
)(i=1,2,…,m);再利用极值的充分判别法判断每个点是否为极值点,若是极值点,则求出对应的极值;最后由拉格朗日乘数法求得f(x,y)在D的边界上的可疑极值,将以上所得函数值进行比较,便可得到结果.
转载请注明原文地址:https://kaotiyun.com/show/6jr4777K
0
考研数学一
相关试题推荐
[*]
设(X,Y)的联合密度函数为(1)求a;(2)求=X,Y的边缘密度,并判断其独立性;(3)求fX|Y(x|y).
设X,Y的概率分布为,且P(XY=0)=1.(1)求(X,Y)的联合分布;(2)X,Y是否独立?
二次型f(x1,x2,x3)=x12+ax22+x32-4x1x2—8x1x3—4x2x3经过正交变换化为标准形5y12+by22一4y32,求:(1)常数a,b;(2)正交变换的矩阵Q.
袋中有12只球,其中红球4个,白球8个,从中一次抽取两个球,求下列事件发生的概率:(1)两个球中一个是红球一个是白球;(2)两个球颜色相同.
设随机变量X服从参数为λ的泊松分布,且P(X=0)=,则P(X≥1)=_________
设f(x)是以T为周期的连续函数,且也是以T为周期的连续函数,则b=_________.
设函数f(x)在[0,+∞)上连续,若对任意的t∈(0,+∞)恒有其中Ω(t)={(x,y,z)|x2+y2+z2≤t2},D(t)是Ω(t)在xOy平面上的投影区域,∑(t)是球域Ω(t)的表面,L(t)是D(t)的边界曲线.证明:f(x)满足且f(0)
设一次试验成功的概率为p,进行100次独立重复试验,当p=___________时,成功次数的标准差最大,其最大值为__________.
对某一目标进行多次同等规模的轰炸,每次轰炸命中目标的炸弹数目是个随机变量,假设其期望值为2,标准差是1.3,计算在100次轰炸中有180颗到220颗炸弹命中目标的概率.
随机试题
女性,26岁。因甲状腺功能亢进症行甲状腺切除,术后第二天出现手足抽搐最可能的原因是
阻断双侧颈总动脉可使
2006年5月17日,马来西亚人陈某驾驶货轮在我国领海运输我国限制进口货物,被我国某海关查获。某海关经查认定,陈某运输的以上货物无合法证明,其以运往马来西亚海防为名,实际准备运往我国内地。某海关认定陈某的行为已构成走私,决定没收其所有物品。香港某有限公司不
色调由色彩的()三要素决定。
工业项目的可行性研究报告一般应包括()。
结构素描和__________是素描两大体系。
根据以下情境材料,回答问题。棚户区改造工程在某县全面推进。但日前在社会上谣传政府将对租房户进行补贴,广大租房群众为能及时得到补贴到政府门口聚集请愿。5月8日下午16时,在县政府门前聚集群众最多时达到1000余人,110指挥中心立即指令巡特警大队警力到现场
某人同时购买2年期、5年期和10年期三种国债,投资额的比为5:3:2。后又以与前次相同的投资总额全部购买5年期国债,则此人两次对5年期国债的投资额占两次总投资额的比例是( )。
Interestreferstotheamountwhatyourmoneyearnswhenitiskeptinasavingsinstrument.
Manychildrenfirstlearnthevalueofmoneybyreceivinganallowance.Thepurposeistoletchildrenlearn(1)______experienc
最新回复
(
0
)