首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x,y)=x3+y3=3x2-3y2,求f(x,y)的极值及其在x2+y2≤16上的最大值.
设f(x,y)=x3+y3=3x2-3y2,求f(x,y)的极值及其在x2+y2≤16上的最大值.
admin
2017-10-25
32
问题
设f(x,y)=x
3
+y
3
=3x
2
-3y
2
,求f(x,y)的极值及其在x
2
+y
2
≤16上的最大值.
选项
答案
根据题意可得 [*] 解得x
1
=0,x
2
=2,y
1
=0,y
2
=2. 即共有4个极值可疑点:(0,0),(0,2),(2,0),(2,2). 又因为 [*] 则在点(0,0)处, B
2
-AC=0-(-6)×(-6)=-36<0且A=-6<0. 所以点(0,0)是一个极大值点且极大值为f(0,0)=0. 同理,f(2,2)=-8是一个极小值;而f(0,2)与f(2,0)不是极值. 由上面讨论可知,f(x,y)在闭域D上的最大值,若在D内达到,必是在(0,0)点取得,但也可能在D的边界上,故建立拉格朗日函数. 令 L(x,y,λ)=x
3
+y
3
-3x
2
-3y
2
+λ(x
2
+y
2
-16), 则有 [*] 解得:x=0,y=4或x=4,y=0或x=[*] 因此f(x,y)在D上的最大值为 [*]
解析
先求出函数f(x,y)在区域D:x
2
+y
2
≤16内的极值可疑点(x
i
,y
i
)(i=1,2,…,m);再利用极值的充分判别法判断每个点是否为极值点,若是极值点,则求出对应的极值;最后由拉格朗日乘数法求得f(x,y)在D的边界上的可疑极值,将以上所得函数值进行比较,便可得到结果.
转载请注明原文地址:https://kaotiyun.com/show/6jr4777K
0
考研数学一
相关试题推荐
从学校乘汽车到火车站的途中有三个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,且遇到红灯的概率为.设X表示途中遇到红灯的次数,则E(X)=________.
设X,Y为随机变量,若E(XY)=E(X)E(Y),则().
函数f(x)=x3一3x+k只有一个零点,则k的范围为().
举例说明函数可导不一定连续可导.
在区间[0,a]上|f’’(x)|≤M,且f(x)在(0,a)内取得极大值.求证:|f’(0)|+|f’(a)}≤Ma.
直线L的方向向量s=(1,2,一3)×(一2,6,0)=(18,6,10),平面π的法向n=(2,一1,一3),所以s.n=18×2+6×(一1)+10×(一3)=0,故s⊥n,即直线L∥平面π,取直线上一点,令z=0,则[*]代入平面方程中,得到:[*]
设函数f(x)在[0,+∞)上连续,若对任意的t∈(0,+∞)恒有其中Ω(t)={(x,y,z)|x2+y2+z2≤t2},D(t)是Ω(t)在xOy平面上的投影区域,∑(t)是球域Ω(t)的表面,L(t)是D(t)的边界曲线.证明:f(x)满足且f(0)
甲、乙两船驶向不能同时停靠两条船的码头,它们一天到达时间是等可能的,如果甲停靠,则停靠的时间为1小时,若乙停靠,则停靠的时间为2小时,求它们不需要等候的概率.
求函数f(x)=的单调区间与极值.
设f(x)在(一∞,+∞)连续,在点x=0处可导,且f(0)=0,令(I)试求A的值,使F(x)在(一∞,+∞)上连续;(II)求F’(x)并讨论其连续性.
随机试题
ThenuclearpoweremergencyataJapaneseatomicpowerplantlastMarchcouldleadtoamajorre-examinationinEuropeancountri
(2010年4月)对于预备犯,可以比照既遂犯从轻、_______。
论述纵隔肿瘤诊断方法。
早期发现大肠癌的初步筛查手段是
围堰是保护水工建筑物干地施工的必要()。
公安部规定的信息安全、运行安全是什么?
左边给定的是纸盒的外表面,下列哪一项不能由它折叠而成?
【谶纬之学】湖南师范大学2015年中国史综合真题;江苏师范大学2017年中国通史真题;西北民族大学2017年中国史综合真题
试述共和初年罗马平民对贵族的斗争。
在下列设备中,不能作为微机输出设备的是()。
最新回复
(
0
)