首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
职业资格
《义务教育数学课程标准(2011 年版)》在课程内容中要求:创新意识的培养是现代数学教育的根本任务,应体现在数学教与学的过程之中,学生自己发现问题和提出问题是创新的基础;独立思考、学会思考是创新的核心;归纳概括得到猜想和规律,并加以验证是创新的重要方法。
《义务教育数学课程标准(2011 年版)》在课程内容中要求:创新意识的培养是现代数学教育的根本任务,应体现在数学教与学的过程之中,学生自己发现问题和提出问题是创新的基础;独立思考、学会思考是创新的核心;归纳概括得到猜想和规律,并加以验证是创新的重要方法。
admin
2022-08-05
55
问题
《义务教育数学课程标准(2011 年版)》在课程内容中要求:创新意识的培养是现代数学教育的根本任务,应体现在数学教与学的过程之中,学生自己发现问题和提出问题是创新的基础;独立思考、学会思考是创新的核心;归纳概括得到猜想和规律,并加以验证是创新的重要方法。
素材:如图所示,将正方形纸片ABCD折叠,使B点落在CD边上一点E(不与C,D重合),压平后得到折痕MN。
问题:
(1)结合题目素材,试根据点E在CD上的化置变化,设置适当条件,编制一道数学题目;(不要求解答)
(2)结合(1),试以提出问题为主线进行“探究式”解题教学,撰写一份培养学生观察与发现,归纳与推理能力的教学过程设计。(只需写出教学过程,突出探究的方法与问题即可)
选项
答案
(1)本题具有开放性,题目设置合理即可,下面是几个示例: 设正方形纸片ABCD的边长为2, ①E在什么位置时,△ENC是一个角为30°的直角三角形; ②试写出NC与EC的数量关系; ③求E在什么位置时,△ENC的面积取得最大值; ④当CE/CD=1/2时,求AM/BN的值。 (2)教学过程 1.复习旧知 提出问题:在之前学习的三角形知识中,有哪些常用的性质和定理? 预设: ①全等三角形判定定理, ②相似三角形判定定理, ③等腰三角形性质, ④勾股定理…… 找学生回答并追问,明确具体的性质和定理内容。 2.讲授新知 在复习之前的知识之后,结合(1)中②③进行“探究式”解题教学。 给出例题:如图所示,已知正方形纸片ABCD的边长为2,将正方形纸片ABCD折叠,使B点落在CD边上一点E(不与C,D重合),压平后得到折痕MN,A点落在点F处。 [*] 问题1:根据条件,能够获得哪些结论? 学生思考讨论,教师提问后总结:AM=FM,BN=EN,Rt△ENC,MN所在的直线是BF的垂直平分线(需连接BE),∠NBE=∠NEB,∠ENC=2∠NBE,…… 问题2:如果CE=[*]DE,CE=DE,分别求NC。 学生思考后,提问并总结:由已知条件知[*]在Rt△ENC中,EN+NC=BN+NC=BC=2,再利用勾股定理就可分别求出NC。 问题3:如果设NC=x,EC=y,试求y关于x的函数关系式。 引导学生在问题2的基础上思考解决问题3的方法后,教师小结:在Rt△ENC中利用勾股定理得到等量关系,NC
2
+EC
2
=NE
2
,x
2
+y
2
=(2-x)
2
,整理得[*],再根据图形得出0<x<1。 问题4:在问题3的基础上,我们还能得出什么结论? 学生思考讨论,教师提问后总结:可以求出y的取值范围,可以写出△ENC的周长和面积的表达式。 问题5:写出△ENC的面积关于x的函数表达式。 通过渐进式的探究,将问题细化,使学生可以很容易地解决问题5,订正答案:S
△ENC
=[*],0<x<1。 问题6:求点E在什么位置时,△ENC的面积取得最大值? 提示:之前的几个问题都是为了解决问题6做铺垫,在前五个问题的基础上研究问题6,几何问题已经转化成函数求最值问题,即求函数S(x)=x[*](0<x<1)的最大值。 预留时间供学生解题。教师对本节课做小结:同学们,我们在学习数学的过程中要善于独立思考,学会在已知条件的基础上归纳概括得出猜想和规律,发现问题,提出问题并想办法去解决问题。要大胆地去尝试,把看起来难的问题,细化成若干个可以解决的小问题,在不断探究不断深入的过程中就会自然而然地解决问题。
解析
转载请注明原文地址:https://kaotiyun.com/show/6ptv777K
本试题收录于:
数学学科知识与教学能力题库教师资格分类
0
数学学科知识与教学能力
教师资格
相关试题推荐
人工智能成为全球智能制造技术的热点,被不断地应用到图像语音识别、自动驾驶等领域,涵盖电子、纺织、冶金、汽车等传统行业,还涉及高端装备制造、机器人、新能源等新兴产业。企业适应此变化,必须()。
根据《普通高中思想政治课程标准(实验)》中课程资源的开发与建议,课程资源的开发和利用,不仅是特定部门和人员的专业行为,更是教师主导的活动。课程资源开发包括()。①自主开发②特色开发③共同开发④社会开发
燃放烟花爆竹在增添喜庆气氛的时候也带来了环境污染和安全隐患。在绿色发展深入人心的今天,限放禁放逐渐占了上风。这一变化体现的哲理是()。①整体与部分的辩证关系②主要矛盾和次要矛盾的辩证关系③两点论与重点论的统一④矛盾的主要方面和次
人们不小心打破花瓶除了沮丧别无他为,丹麦物理学家雅各布·博尔却在打破花瓶时细心收集碎片,按重量的数量级分类,由此发现不同重量级间的倍数关系,于是“碎花瓶理论”产生,这一理论在恢复破损文物等工作中发挥着重要作用。这体现的哲理是()。①哲
已知|a|=1,|b|=2。(1)若a//b,求a.b;(2)若a、b的夹角为60°,求|a+b|;(3)若a一b与a垂直,求当k为何值时,(ka—b)⊥(a+2b)。
“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的()。
案例1:教师:我们以前已经学过了一元一次方程以及二元一次方程组的解法,并简要介绍方法。并在解决许多实际问题的过程中感受到:将相等关系用数学符号抽象后所得到的“方程”确实是一种有效的数学工具,它能让我们的思维过程更加准确和简明!但是,生活中除了相等
在区间[0,1]中随机抽取两个数(x,y),即(x,y)服从[0,1]上的均匀分布,求这两个数之差的绝对值小于的概率。
发现勾股定理的希腊数学家是()。
设,已知线性方程组Ax=b存在两个不同的解,求λ,a。
随机试题
作为经典的艺术门类,绘画在历史长河中并非独立发展。在原始艺术中,音乐、诗歌、舞蹈三位一体,密不可分,绘画则将载歌载舞的场景留存于世。不同艺术门类成熟之后各自独立,但在发展的过程中又相互吸收、相互依托、相互影响。各艺术门类之间的吸收与借鉴、配合与结合,是艺术
感染性胸膜炎最常见的病原菌是
急性胆囊炎的特征除外
甲为了杀乙,于2013年9月12日先后三次向乙的水杯中投毒,投放的剂量分别100mg、200mg、300mg。甲对乙先投毒后,又将其送往医院抢救并协助治疗,使乙脱离了生命危险,并向公安机关如实交代了自己的行为,甲的行为符合《刑法》规定的哪些行为特征:(
对涉及结构安全和()的重要分部工程应进行抽样检测。
具有明显的形态方向且与原有的趋势方向相反的整理形态有()
地方人民代表大会的代表中应当有适当数量的妇女代表。这个规定主要是在保护妇女的( )。
申某家住甲地,在乙地制作盗版光盘经过丙地运输到丁地进行销售。对申某的违法行为要进行处罚,谁有管辖权?()
EveryoneknowshowtogettoCarnegieHall:practice,practice,practice.Butwhatabouthowtogetintothenation’smosthonor
下图是在一台Windows主机在命令行模式不执行某个命令时用sniffer捕获的数据包。请根据图中信息回答下列问题。主机202.38.97.197是【3】服务器,其提供服务的端口是【4】。
最新回复
(
0
)