首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2, 记 (Ⅰ)证明二次型f对应的矩阵为2ααT+ ββT; (Ⅱ)若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22。
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2, 记 (Ⅰ)证明二次型f对应的矩阵为2ααT+ ββT; (Ⅱ)若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22。
admin
2017-01-21
33
问题
设二次型f(x
1
,x
2
,x
3
)=2(a
1
x
1
+a
2
x
2
+a
3
x
3
)
2
+(b
1
x
1
+b
2
x
2
+b
3
x
3
)
2
,
记
(Ⅰ)证明二次型f对应的矩阵为2αα
T
+ ββ
T
;
(Ⅱ)若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y
1
2
+y
2
2
。
选项
答案
(Ⅰ)f(x
1
,x
2
,x
3
)=2(a
1
x
1
+a
2
x
2
+a
3
x
3
)
2
+(b
1
x
1
+b
2
x
2
+b
3
x
3
)
2
[*] 所以二次型f对应的矩阵为2αα
T
+ ββ
T
。 (Ⅱ)设A=2αα
T
+ ββ
T
,由于|α|=1,α
T
β=β
T
α=0,则 Aα=(2αα
T
+ββ
T
)α=2α|α|
2
+ββ
T
α=2α, 所以α为矩阵对应特征值λ
1
=2的特征向量; Ap=(2αα
T
+ββ
T
)β=2αα
T
β+β|β|
2
=β, 所以β为矩阵对应特征值λ
2
=1的特征向量。 而矩阵A的秩 r(A)=r(2αα
T
+ ββ
T
)≤r(2αα
T
)+ r(ββ
T
)=2, 所以λ
3
=0也是矩阵的一个特征值。故f在正交变换下的标准形为2y
1
2
+y
2
2
。
解析
转载请注明原文地址:https://kaotiyun.com/show/71H4777K
0
考研数学三
相关试题推荐
设总体X的概率密度为其中λ>0为未知参数,a>0是已知常数,试根据来自总体X的简单随机样本X1,X1…,X,求λ的最大似然估计量.
设X,Y是两个随机变量,且P{x≤1,Y≤1}=4/9,P{x≤1}=P{Y≤1}=5/9,则P{min(X,Y)≤1}=().
求幂级数x2n的收敛域和函数.
投掷一枚硬币三次,观察三次投掷出现正反面情况,比如一种可能结果为HTT(表示第一次出现的是正面,第二次和第三次出现的都是反面).(1)写出所有可能结果构成的样本空间Ω;(2)事件A表示恰好出现两次正面,写出A中所包含的所有可能结果;
已知yt=3et是差分方程yt+1+ayt-1=et的一个特解,则a=_______.
设A,B为两个随机事件,且P(A)=1/4,P(B丨A)=1/3,P(A丨B)=1/2,令X与Y的相关系数pXY;
设函数y=y(x)往(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.求变换后的微分方程满足初始条件y(0)=0,y’(0)=3/2的解.
某商品进价为a(元/件),根据以往经验,当销售价为b(元/件)时,销售量为c件,市场凋查表明,销售价每降10%,销售量增加40%,现决定一次性降价.试问,当销售定价为多少时,可获得最大利润?并求出最大利润.
微分方程y"+y=cosx的一个特解的形式为y"=().
下列各题中均假定fˊ(x。)存在,按照导数定义观察下列极限,指出A表示什么:
随机试题
导游讲解时,在手势的运用上必须注意()。
Excel2010中,若D1存有1,函数sum(10*D1,AVERAGE(/10,0))的值是________。
男性,40岁,因汽油着火烧伤总面积80%,Ⅲ度烧伤50%,应采取治疗
糖原合成时,葡萄糖供体是
关于水玻璃的说法,错误的是()。
商业银行的基本职能不包括()。
(2010年考试真题)甲公司为增值税一般纳税人,2009年12月31日购入不需要安装的生产设备一台,当日投入使用。该设备价款为360万元,增值税税额为61.2万元,预计使用寿命为5年,预计净残值为零,采用年数总和法计提折旧。该设备2010年应计提的折旧为(
李某。男。40岁,公司领导。身高175cm。体重86kg。平时喜欢吃酱牛肉,喝牛奶,吃海鲜。经常和朋友一起喝啤酒吃路边烧烤。很少吃青菜和谷类食物。李某的膳食结构属于()。[辽宁省2007年11月三级真题]
在教育三合力中,起主导作用的是()。
将两个关系拼接成一个新的关系,生成的新关系中包括满足条件的元组,这种操作被称为()。
最新回复
(
0
)