首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[a,b]上存在二阶导数,且g〞(x)≠0,f(a)=f(b)=g(a)=g(b)=0, 证明:(1)在开区间(a,b)内g(x)≠0; (2)在开区间(a,b)内至少存在一点ε,使得
设f(x),g(x)在[a,b]上存在二阶导数,且g〞(x)≠0,f(a)=f(b)=g(a)=g(b)=0, 证明:(1)在开区间(a,b)内g(x)≠0; (2)在开区间(a,b)内至少存在一点ε,使得
admin
2017-11-13
56
问题
设f(x),g(x)在[a,b]上存在二阶导数,且g〞(x)≠0,f(a)=f(b)=g(a)=g(b)=0,
证明:(1)在开区间(a,b)内g(x)≠0;
(2)在开区间(a,b)内至少存在一点ε,使得
选项
答案
证明 (1)(反证法)假设存在点c∈(a,b),使g(c)=0,则f(x),g(x)分别在区间[a,c],[c,b]上用罗尔定理,得jε
1
∈(a,c),ε
2
∈(c,b),使得gˊ(ε
1
)=gˊ(ε
2
)=0,进而再在区间[ε
1
,ε
2
]上对gˊ(x)再用罗尔定理知了ε
3
∈(ε
1
,ε
2
),使得g〞(ε
3
)=0;但这与题设g〞(x)≠0矛盾 所以在开区间(a,b)内g(x)≠0 (2)在开区间(a,b)内至少存在一点ε,使得[*] 设F(x)=f(x)gˊ(x)-fˊ(x)g(x),易知 F(a)=f(a)gˊ(a)-fˊ(a)g(a)=0, F(b)=f(b)gˊ(b)-fˊ(b)g(b)=0,在[a,b]上对F(x)用罗尔定理, 必存在ε∈(a,b),使fˊ(ε)=0 Fˊ(ε)=Fˊ(x)|
x=ε
=[fˊ(x)gˊ(x)+f(x)g〞(x)-f〞(x)g(x)-fˊ(x)gˊ(x)]|
x=ε
=[f(x)g〞(x)-f〞(x)g(x)]|
x=ε
=f(ε)g〞(ε)-f〞(ε)g(ε)=0 又因为g(ε)≠0,g〞(ε)≠0 所以[*] ε∈(a,b)
解析
转载请注明原文地址:https://kaotiyun.com/show/7Nr4777K
0
考研数学一
相关试题推荐
把写成极坐标的累次积分,其中D={(x,y)|0≤x≤1,0≤y≤x}.
用变量代换x=sint将方程化为y关于t的方程,并求微分方程的通解.
A、发散B、绝对收敛C、条件收敛D、敛散性与k有关C
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,.证明:
设一设备在时间长度为t的时间内发生故障的次数N(t)~P(λt).求相继两次故障之间时间间隔T的概率分布;
设,方程组AX=β有解但不唯一.求正交阵Q,使得QTAQ为对角阵.
一电路使用某种电阻一只,另外35只备用,若一只损坏,立即使用另一只更换,直到用完所有备用电阻为止.设电阻使用寿命服从参数为λ=0.01的指数分布,用X表示36只电阻的使用总寿命,用中心极限定理估计P(X>4200)
设二维随机变量(X,Y)服从二维正态分布,且X~N(1,32),Y~N(0,42),且X,Y的相关系数为,又设求E(Z),D(Z);
n把钥匙中只有一把可以把门打开,现从中任取一把开门,直到打开门为止,下列两种情况分别求开门次数的数学期望和方差:试开过的钥匙除去;
求微分方程y’cosy=(1+cosxsiny)siny的通解.
随机试题
某个团去西藏旅游,除拉萨市之外,还有6个城市或景区可供选择:E市、F市、G湖、H山、I峰、J湖。考虑时间、经费、高原环境、人员身体状况等因素:(1)G湖和J湖中至少要去一处。(2)如果不去E市或者不去F市,则不能去G湖游览。(3)如果不去E市,也不能
等分圆弧槽属于()中的一种。
下列设备是计算机硬件设备的是()。
设行列式=0,则k的值为()
普通型流脑的典型临床表现是( )
我国“十一五”科技发展规划提出,为实现“进入创新型国家行列”的目标,需要在“十一五”期间奠定的基础有()
莱布尼兹是17世纪伟大的哲学家,先于牛顿发表了自己的微积分研究成果。但是当牛顿公布了他的私人笔记,说明他至少在莱布尼兹发表其成果的10年前已经运用了微积分的原理。牛顿还说,在莱布尼兹发表其成果的不久前,他在给莱布尼兹的信中谈起过自己关于微积分的思想。但是事
=___________。
以下有关数组定义的语句序列中,错误的是______。
TheWorldCuphasbecomethemoststreamedlivesportingeventtheUShaseverseen,asAmericanstunedintothisyear’stourna
最新回复
(
0
)