首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[a,b]上存在二阶导数,且g〞(x)≠0,f(a)=f(b)=g(a)=g(b)=0, 证明:(1)在开区间(a,b)内g(x)≠0; (2)在开区间(a,b)内至少存在一点ε,使得
设f(x),g(x)在[a,b]上存在二阶导数,且g〞(x)≠0,f(a)=f(b)=g(a)=g(b)=0, 证明:(1)在开区间(a,b)内g(x)≠0; (2)在开区间(a,b)内至少存在一点ε,使得
admin
2017-11-13
60
问题
设f(x),g(x)在[a,b]上存在二阶导数,且g〞(x)≠0,f(a)=f(b)=g(a)=g(b)=0,
证明:(1)在开区间(a,b)内g(x)≠0;
(2)在开区间(a,b)内至少存在一点ε,使得
选项
答案
证明 (1)(反证法)假设存在点c∈(a,b),使g(c)=0,则f(x),g(x)分别在区间[a,c],[c,b]上用罗尔定理,得jε
1
∈(a,c),ε
2
∈(c,b),使得gˊ(ε
1
)=gˊ(ε
2
)=0,进而再在区间[ε
1
,ε
2
]上对gˊ(x)再用罗尔定理知了ε
3
∈(ε
1
,ε
2
),使得g〞(ε
3
)=0;但这与题设g〞(x)≠0矛盾 所以在开区间(a,b)内g(x)≠0 (2)在开区间(a,b)内至少存在一点ε,使得[*] 设F(x)=f(x)gˊ(x)-fˊ(x)g(x),易知 F(a)=f(a)gˊ(a)-fˊ(a)g(a)=0, F(b)=f(b)gˊ(b)-fˊ(b)g(b)=0,在[a,b]上对F(x)用罗尔定理, 必存在ε∈(a,b),使fˊ(ε)=0 Fˊ(ε)=Fˊ(x)|
x=ε
=[fˊ(x)gˊ(x)+f(x)g〞(x)-f〞(x)g(x)-fˊ(x)gˊ(x)]|
x=ε
=[f(x)g〞(x)-f〞(x)g(x)]|
x=ε
=f(ε)g〞(ε)-f〞(ε)g(ε)=0 又因为g(ε)≠0,g〞(ε)≠0 所以[*] ε∈(a,b)
解析
转载请注明原文地址:https://kaotiyun.com/show/7Nr4777K
0
考研数学一
相关试题推荐
设A为m×n阶实矩阵,且r(A)=n.证明:ATA的特征值全大于零.
设f(x)在[0,1]上连续,(0,1)内可导,且,试证:至少存在一点ξ∈(0,1),使f’(ξ)=ξf(ξ).
一般会想到如下解法:用牛顿一莱布尼茨公式,令[*]则[*]
设有曲面S:2x2+4y2+z2=4与平面π:2x+2y+z+5=0,试求曲面S上的点及其上的切平面与法线方程,使该切平面与平面π平行;
已知向量的始点A(4,0,5),的方向余弦为则B的坐标为()
设随机变量X满足|X|≤1,且,在{一1<X<1)发生的情况下,X在(一1,1)内任一子区间上的条件概率与该子区间长度成正比.求X的分布函数;
设有来自三个地区的各10名、15名和25名考生的报名表,其中女生的报名表分别为3份、7份和5份.随机取出一个地区,再从中抽取两份报名表.(1)求先抽到的一份报名表是女生表的概率p;(2)设后抽到的一份报名表为男生的报名表,求先抽到的报名表为女生报名
设随机变量X1,X2,…,Xm+n(m<n)独立同分布,其方差为σ2,令求:D(Y),D(Z)
设二维随机变量(X,Y)服从二维正态分布,且X~N(1,32),Y~N(0,42),且X,Y的相关系数为,又设求E(Z),D(Z);
利用变换x=arctant将方程化为y关于t的方程,并求原方程的通解.
随机试题
A.麻风病B.狂犬病C.风疹D.鼠疫E.流行性腮腺炎上述各项,属于乙类传染病的是()
会计核算软件主要是替代了手工会计的()等工作。
下列商业银行的理财顾问服务流程的环节中,顺序存“建立投资组合”之后的是()
房地产开发企业计算土地增值税时,所销售的房产对应的下列费用中,准予按照实际发生额从收入总额中扣除的有()。
在签署审计业务约定书前,会计师事务所应当评价自身的专业胜任能力,包括( )。在签署审计业务约定书之前,注册会计师应当对被审计单位的基本情况进行了解,其内容包括( )。
儿歌是以低幼儿童为主要对象的文学作品,试简述儿歌的特点。
3岁孩子拿着画笔认真画画时,不仅是手动,身体的动作、面部的动作也来帮忙。这体现了儿童动作发展的()。
在关系数据库中,用来表示实体间联系的是
Agoodbookmaydrawourattentionsocompletelythatweforgetoursurroundingsandevenouridentityforthetimebeing.
A、 B、 C、 A叙述将来的事情的陈述句→将来时态的否定回答
最新回复
(
0
)