首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(I)已知由参数方程确定了可导函数y=f(x),求证:x=0是y=f(x)的极大值点. (Ⅱ)设F(x,y)在(x0,y0)某邻域有连续的二阶偏导数,且F(x0,y0)=F′x (x0,y0)=0,F′y (x0,y0)>0,F″xx (x0,y0)<0.
(I)已知由参数方程确定了可导函数y=f(x),求证:x=0是y=f(x)的极大值点. (Ⅱ)设F(x,y)在(x0,y0)某邻域有连续的二阶偏导数,且F(x0,y0)=F′x (x0,y0)=0,F′y (x0,y0)>0,F″xx (x0,y0)<0.
admin
2019-01-25
43
问题
(I)已知由参数方程
确定了可导函数y=f(x),求证:x=0是y=f(x)的极大值点.
(Ⅱ)设F(x,y)在(x
0
,y
0
)某邻域有连续的二阶偏导数,且F(x
0
,y
0
)=F′
x
(x
0
,y
0
)=0,F′
y
(x
0
,y
0
)>0,F″
xx
(x
0
,y
0
)<0.由方程F(x,y)=0在x
0
的某邻域确定的隐函数y=y(x),它有连续的二阶导数,且y(x
0
)=y
0
,求证y(x)以x=x
0
为极小值点.
选项
答案
(I)先求y(0):由x=arctant知,x=0 <=> t=0,x>0(<0) <=> t>0(<0).由y=ln(1一t
2
)一siny知,x=0 <=> y=一siny <=> y=0(y+siny[*]).因此y(0)=0,下面求[*]并判断它在x=0邻域的正负号. 为求[*],需先求[*].由参数方程得 [*] 于是[*] 其中δ>0是充分小的数.因此x=0是y=f(x)的极大值点. (Ⅱ)由隐函数求导法知y’(x)满足 [*] 令x=x
0
,相应地y=y
0
,由F’
x
(x
0
,y
0
)=0,F’
y
(x
1
,y
0
)≠0得y’(x
0
)=0.将上式再对x求导, 并注意y=y(x)即得 [*] 再令x=x
0
,相应地y=y
0
,y’(x
0
)=0,得 [*] 因[*] 因此x=x
0
是y=y(x)的极小值点.
解析
转载请注明原文地址:https://kaotiyun.com/show/7qM4777K
0
考研数学一
相关试题推荐
计算I=∫L(ex+1)cosydx一[(ex+x)siny—x]dy,其中L为由点A(2,0)沿心形线r=1+cosθ上侧到原点的有向曲线段.
求.
曲线y==x4e-x2(x≥0)与x轴围成的区域面积为_________.
设A为n阶可逆矩阵,λ为A的特征值,则A*的一个特征值为().
设二维随机变量(X,Y)的联合密度f(x,y)=.求Z=max(X,Y)的密度.
设非负函数f(x)当x≥0时连续可微,且f(0)=1.由y=f(x),x轴,y轴及过点(x,0)且垂直于x轴的直线围成的图形的面积与y=f(x)在[0,x]上弧的长度相等,求f(x).
一个盒子中5个红球,5个白球,现按照如下方式,求取到2个红球和2个白球的概率.逐个抽取,取后无放回;
判断级数的敛散性.
袋中有10个大小相等的球,其中6个红球4个白球,随机抽取2个,每次取1个,定义两个随机变量如下:就下列两种情况,求(X,Y)的联合分布律:第一次抽取后不放回.
设∑为球面x2+y2+z2=R2上半部分的上侧,则下列结论不正确的是()
随机试题
属于手太阴肺经的穴位有()。
FID检测器属于浓度型检测器。()
根据柯式四级评估法,评估重点为学员及组织的绩效改进情况的培训效果评估层次是【】
已知f(x)=arccotx2,则f’(x0)=__________.
麻疹传染性最强的时期是
口腔修复应用材料应具有的性能中,错误的是
17周岁的聋哑人王某,以自己的劳动收入为主要生活来源。根据我国法律规定,王某应被视为()。
甲将自己收藏的一幅名画卖给乙,乙当场付款,约定5天后取画。但该画在第二天被丙盗走,并卖给不知情的第三人丁。恰好乙与丁认识,得知此事后便诱使丁的儿子从家里将画偷出来交给自己。此时画的所有权属于下列哪个人?()
设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表示,则()
Theessenceofbeliefistheestablishmentof____;differentbeliefsaredistinguishablebythedifferentmodesofactiontowh
最新回复
(
0
)