首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(I)已知由参数方程确定了可导函数y=f(x),求证:x=0是y=f(x)的极大值点. (Ⅱ)设F(x,y)在(x0,y0)某邻域有连续的二阶偏导数,且F(x0,y0)=F′x (x0,y0)=0,F′y (x0,y0)>0,F″xx (x0,y0)<0.
(I)已知由参数方程确定了可导函数y=f(x),求证:x=0是y=f(x)的极大值点. (Ⅱ)设F(x,y)在(x0,y0)某邻域有连续的二阶偏导数,且F(x0,y0)=F′x (x0,y0)=0,F′y (x0,y0)>0,F″xx (x0,y0)<0.
admin
2019-01-25
46
问题
(I)已知由参数方程
确定了可导函数y=f(x),求证:x=0是y=f(x)的极大值点.
(Ⅱ)设F(x,y)在(x
0
,y
0
)某邻域有连续的二阶偏导数,且F(x
0
,y
0
)=F′
x
(x
0
,y
0
)=0,F′
y
(x
0
,y
0
)>0,F″
xx
(x
0
,y
0
)<0.由方程F(x,y)=0在x
0
的某邻域确定的隐函数y=y(x),它有连续的二阶导数,且y(x
0
)=y
0
,求证y(x)以x=x
0
为极小值点.
选项
答案
(I)先求y(0):由x=arctant知,x=0 <=> t=0,x>0(<0) <=> t>0(<0).由y=ln(1一t
2
)一siny知,x=0 <=> y=一siny <=> y=0(y+siny[*]).因此y(0)=0,下面求[*]并判断它在x=0邻域的正负号. 为求[*],需先求[*].由参数方程得 [*] 于是[*] 其中δ>0是充分小的数.因此x=0是y=f(x)的极大值点. (Ⅱ)由隐函数求导法知y’(x)满足 [*] 令x=x
0
,相应地y=y
0
,由F’
x
(x
0
,y
0
)=0,F’
y
(x
1
,y
0
)≠0得y’(x
0
)=0.将上式再对x求导, 并注意y=y(x)即得 [*] 再令x=x
0
,相应地y=y
0
,y’(x
0
)=0,得 [*] 因[*] 因此x=x
0
是y=y(x)的极小值点.
解析
转载请注明原文地址:https://kaotiyun.com/show/7qM4777K
0
考研数学一
相关试题推荐
设x一(a+bcosx)sinx为x→0时x的5阶无穷小,求a,b的值.
设两台同样的记录仪,每台无故障工作的时问服从参数为5的指数分布,首先开动其中一台,当发生故障时停用而另一台自动开动,求两台记录仪无故障工作的总时间T的概率密度.
设A为四阶矩阵,|A*|=8,则|(A)-1一3A*|=_______.
设F(X)在[0,1]连续可导,且F(0)=0.证明:存在ξ∈[0,1],使得f’(ξ)=2∫01f(x)dx.
把f(x,y)dxdy写成极坐标的累次积分,其中D={(x,y)|0≤x≤1,0≤y≤x}.
设二次型f(x1,x2,x3)=(a一1)x12+(a一1)x22+2x32+2x1x2(a>0)的秩为2.用正交变换法化二次型为标准形.
设f(x)二阶可导,f(0)=0,令g(x)=求g’(x);
交换积分次序并计算∫0adx∫0xdy(a>0).
袋中有12只球,其中红球4个,白球8个,从中一次抽取两个球,求下列事件发生的概率:(1)两个球中一个是红球一个是白球;(2)两个球颜色相同.
设z=z(x,y)由方程x—mz=φ(y—nz)所确定(其中m,n为常数,φ为可微函数),则=__________
随机试题
小脑病变时的典型步态为()
患者女性,20岁,近一个半月来干咳伴有低热,自觉乏力。听诊右上锁骨下区有固定的湿性啰音,怀疑其肺结核。如病人已确诊,下列护理措施中哪项不妥()
《建设项目环境影响评价资质证书》的有效期为()。
与截止阀相比,闸阀的特点包括()。
为了保证会计数据资料安全,根据()的要求,会计部门的所有人员必须进行会计分工和权限设置。
在中国古代,平时用到帝王、圣人、长者或尊者的名字时必须设法避开或改写,叫避讳。避讳有“国讳”、“家讳”和“圣人讳”三种。与此对应的避讳方法也有三种,分别是()。
接待的心理准备包括诚恳的态度和()。
教学环节中的“新课导人”,应用的学习原理是()。
设函数f(x)在[a,b]上连续,且证明:
某企业为了建设一个可供客户在互联网上浏览的网站,需要申请一个()。
最新回复
(
0
)