首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶实对称矩阵,α1=(1,-1,-1)T,α2=(-2,1,0)T是齐次线性方程组Ax=0的基础解系,且矩阵A-6E不可逆。 (Ⅰ)求齐次线性方程组(A-6E)x=0的通解: (Ⅱ)求正交变换x=Qy将二次型XTAx化为标准形;
设A为3阶实对称矩阵,α1=(1,-1,-1)T,α2=(-2,1,0)T是齐次线性方程组Ax=0的基础解系,且矩阵A-6E不可逆。 (Ⅰ)求齐次线性方程组(A-6E)x=0的通解: (Ⅱ)求正交变换x=Qy将二次型XTAx化为标准形;
admin
2017-11-30
74
问题
设A为3阶实对称矩阵,α
1
=(1,-1,-1)
T
,α
2
=(-2,1,0)
T
是齐次线性方程组Ax=0的基础解系,且矩阵A-6E不可逆。
(Ⅰ)求齐次线性方程组(A-6E)x=0的通解:
(Ⅱ)求正交变换x=Qy将二次型X
T
Ax化为标准形;
(Ⅲ)求(A-3E)
100
。
选项
答案
(Ⅰ)因为矩阵A-6E不可逆,所以λ=6是矩阵A的一个特征值;另一方面,因为α
1
,α
2
是齐次线性方程组Ax=0的基础解系,所以λ=0是矩阵A的二重特征值,所以A的特征值为0,0,6。 齐次线性方程组(A-6E)x=0的通解是矩阵A的属于特征值λ=6的特征向量。因为A为3阶实对称矩阵,从而属于不同特征值的特征向量正交。 设α
3
=(x
1
,x
2
,x
3
)
T
是矩阵A的属于特征值λ=6的一个特征向量,则 (α
1
,α
3
)=0,(α
2
,α
3
)=0, 解得α
3
=(-1,-2,1)
T
,所以齐次线性方程组(A-6E)x=0的通解为kα
3
,k为任意常数。 (Ⅱ)下面将向量组α
1
,α
2
,α
3
正交化。令 [*] 下面将向量组β
1
,β
2
,β
3
单位化。令 [*] 则二次型x
T
Ax在正交变换x=Qy下的标准形为6y
3
2
。 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/89X4777K
0
考研数学三
相关试题推荐
设函数f(x)满足xf’(x)一2f(x)=一x,且由曲线y=f(x),x=1及x轴(x≥0)所围成的平面图形为D.若D绕x轴旋转一周所得旋转体体积最小,求: (1)曲线y=f(x);(2)曲线在原点处的切线与曲线及直线x=1所围成的平面图形的
设X~N(μ,σ2),其中σ2已知,μ为未知参数.从总体X中抽取容量为16的简单随机样本,且μ的置信度为0.95的置信区间中的最小长度为0.588,则σ2=________.
设f"(0)=6,且
设函数y=y(x)满足△y=△x+o(△x),且y(1)=1,则∫01y(x)dx=—一.
设f(x)=,则下列结论中错误的是()
已知线性方程组及线性方程组(Ⅱ)的基础解系ξ1=[一3,7,2,0]T,ξ2=[一1,一2,0,1]T.求方程组(Ⅰ)和(Ⅱ)的公共解.
设a,b均为常数,a>一2,a≠0,求a,b为何值时,使
求不定积分∫(arcsinx)2dx.
曲线的渐近线是y=________.
设f(x)连续,且则下列结论正确的是().
随机试题
心包叩击音
鉴别消化性溃疡和慢性胃炎最好的方法是( )
治疗心脏骤停宜首选
下列哪一情形,不能引起必要共同诉讼?
某油田企业(增值税一般纳税人)2018年1月发生如下业务:(1)开采原油8万吨,其中包括三次采油的原油0.5万吨,原油不含税销售单价3000万元/吨。(2)将本月自采原油3万吨无偿赠送给关联企业,开采原油过程中加热修井使用自采原油0.1万吨,将上月自采
与市场风险和信用风险相比,商业银行的操作风险具有()。
高速公路上行驶的汽车A的速度是100公里每小时,汽车B的速度是120公里每小时,此刻汽车A在汽车B前方80公里处,汽车A中途加油停车10分钟后继续向前行驶。那么从两车相距80公里处开始,汽车B至少要多长时间可以追上汽车A?()
给定材料1.2015年8月21日,在M市斗潭农贸市场内,刚买了一篮子菜的市民张大爷拎着篮筐.径直走进市场内的食品安全检测室。“麻烦帮我把青菜、南瓜检测一下吧!”工作人员朱建英从张大爷菜篮中拿出少量青菜进行取样,在浸泡试剂10分钟并加热1
下列语句不能够用于打开C根目录下文件test.txt的语句是
TheEndofAIDS?[A]OnJune5th1981America’sCentresforDiseaseControlandPreventionreportedtheoutbreakofanunusualf
最新回复
(
0
)