首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶正交矩阵,λ是A的实特征值,α是相应的特征向量.证明λ只能是±1,并且α也是AT的特征向量.
设A是n阶正交矩阵,λ是A的实特征值,α是相应的特征向量.证明λ只能是±1,并且α也是AT的特征向量.
admin
2016-10-26
31
问题
设A是n阶正交矩阵,λ是A的实特征值,α是相应的特征向量.证明λ只能是±1,并且α也是A
T
的特征向量.
选项
答案
按特征值定义,对于Aα=λα,经转置得 α
T
A
T
=(Aα)
T
=(λα)
T
=λα
T
, 因为A
T
A=E,从而α
T
α=α
T
A
T
Aα=(λα
T
)(λα)=λ
2
α
T
α,则(1一λ
2
)α
T
α=0. 因为α是实特征向量,α
T
α=[*]>0,可知λ
2
=1,由于λ是实数,故只能是1或一1. 若λ=1,从Aα=α,两边左乘A
T
,得到A
T
α=A
T
Aα=α,即α是A
T
关于λ=1的特征向量.
解析
转载请注明原文地址:https://kaotiyun.com/show/8Uu4777K
0
考研数学一
相关试题推荐
设A是n(n≥3)阶矩阵,满足A3=O,则下列方程组中有惟一零解的是().
求下列函数的导数:
设f(x)在(a,b)内是严格下凸函数,证明对任何x1,x2∈(a,b),x1<x<x2,有不等式成立.
设幂级数anxn在(-∞,+∞)内收敛,其和函数y(x)满足y"-2xy’-4y=0,y(0)=0,y’(0)=1.证明an+2=2/(n+1)an,n=1,2,…;
若随机变量X1,X2,…,Xn相互独立同分布于N(μ,22),则根据切比雪夫不等式得P{|X ̄-μ|≥2}≤_________.
一生产线生产的产品成箱包装,每箱的重量是随机的,假设每箱平均重50千克,标准差为5千克,若用最大载重为5吨的汽车承运,试利用中心极限定理说明每辆最多可以装多少箱才能保障不超载的概率大于0.9777(Ф(2)=0.977,其中Ф(x)是标准正态分布函数)
设xn=1/(n2+1)+1/(n2+2)+1/(n2+3)+…+1/(n2+n),求极限xn.
设A为三阶矩阵,A的特征值为λ1=1,λ2=2,λ3=3,其对应的线性无关的特征向量分别为ξ1=
(2004年试题,三)设z=z(x,y)是由x2一6xy+10y2一2yz—z2+18=0确定的函数,求z=z(x,y)的极值点和极值.
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3Aα一2A2α.证明:BTB是正定矩阵.
随机试题
人体最根本最重要的气是
癫痫强直发作一线AEDs
不属于预防医学的道德要求的是
男,64岁。有肺心病史5年,经常头痛头晕,1周来咳嗽加重,咳黄痰,呼吸困难,头痛加重,昨日起嗜睡、谵语。查体:神志不清,颜面水肿,球结膜水肿,口唇发绀,颈静脉充盈,双肺广泛干湿啰音,肝肋下4cm,腹水征(+),下肢水肿,膝反射减弱,巴宾斯基征(+),pH7
郭某与10岁的儿子到饭馆用餐,入厕时将手提包留在座位上嘱儿子看管,回来后发现手提包丢失。郭某要求饭馆赔偿被拒绝,遂提起民事诉讼。根据消费者安全保障权,下列哪一说法是正确的?
[2006年,第56题]细杆AB由另二细杆O1A与O2B铰接支撑,O1ABO2并组成平行四边形(图4.7.3)。杆AB的运动形式为()。
化学危险品的贮存必须_________。
甲股份有限公司(以下简称“甲公司”)及其子公司2×13、2×14、2×15年进行的有关资本运作、销售等交易或事项如下:(1)2×13年9月,甲公司与乙公司控股股东P公司签订协议,约定以发行甲公司股份为对价购买P公司持有的乙公司60%股权。协议同时约定:
对长度为10的线性表进行冒泡排序,最坏情况下需要比较的次数为()。
微型计算机的运算器、控制器及内存储器的总称是( )。
最新回复
(
0
)