首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3,线性表示,向量β2不能由α1,α2,α3线性表示,则必有( )
设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3,线性表示,向量β2不能由α1,α2,α3线性表示,则必有( )
admin
2018-02-07
40
问题
设向量组α
1
,α
2
,α
3
线性无关,向量β
1
可由α
1
,α
2
,α
3
,线性表示,向量β
2
不能由α
1
,α
2
,α
3
线性表示,则必有( )
选项
A、α
1
,α
2
,β
1
线性无关。
B、α
1
,α
2
,β
2
线性无关。
C、α
2
,α
3
,β
1
,β
2
线性相关。
D、α
1
,α
2
,α
3
,β
1
+β
2
线性相关。
答案
B
解析
由α
1
,α
2
,α
3
线性无关,且β
2
不能由α
1
,α
2
,α
3
线性表示知,α
1
,α
2
,α
3
,β
2
线性无关,从而部分组α
1
,α
2
,β
2
线性无关,故B为正确答案。下面证明其他选项的不正确性。
取α
1
=(1,0,0,0)
T
,α
2
=(0,1,0,0)
T
,α
3
=(0,0,1,0)
T
,β
2
=(0,0,0,1)
T
,β
1
=α
1
,知选项A与C错误。
对于选项D,由于α
1
,α
2
,α
3
线性无关,若α
1
,α
2
,α
3
,β
1
+β
2
线性相关,则β
1
+β
2
可由α
1
,α
2
,α
3
线性表示,而β
1
可由α
1
,α
2
,α
3
线性表示,从而β
2
可由α
1
,α
2
,α
3
线性表示,与假设矛盾,从而D错误。
转载请注明原文地址:https://kaotiyun.com/show/8Xk4777K
0
考研数学二
相关试题推荐
[*]
对离散型情形证明:(1)E(X+Y)=EX+EY.(2)EXY=EXEY
拟建一个容积为V的长方体水池,设它的底为正方形,如果池底单位面积的造价是四周单位面积造价的2倍,试将总造价表示成底边长的函数,并确定此函数的定义域。
求下列极限:
设a。,a1,…an为满足的实数,证明方程a。+a1x+a2x2+…+anxn=0在(0,1)内至少有一个实根.
已知函数f(x)在区间(1-δ,1+δ)内具有二阶导数,f(x)单调减少;且f(1)=f’(1)=1,则
设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>O,令μn=f(n)(n=1,2,…),则下列结论正确的是
设A为3阶实对称矩阵,A的秩为2,且求A的所有特征值与特征向量;
求极限
有一平底容器,其内侧壁是由曲线x=φ(y)(y≥0)绕,,轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2m.根据设计要求,当以3m3/min的速率向容器内注入液体时,液面的面积将以πm2/min的速率均匀扩大(假设注入液体前,容器内无液体).(注:
随机试题
精准医疗是指以个体化医疗为基础,通过基因组、蛋白质组等技术,对大样本人群与特定疾病类型进行生物标记物的分析与鉴定、验证与应用,从而精确寻找到疾病的原因和治疗的靶点,最终实现对疾病和特定患者进行个性化精确治疗。根据上述定义,下列选项不属于精准医疗的是:
A.心脏中心部位钙化,有明显移动性B.冠状沟部呈树枝状钙化影C.肺门部位钙化影D.心内膜线状钙化影E.冠状动脉内钙化影下列病例X线片可见上述哪项表现:男性,70岁。无高血压和高血脂史,近3周来常有胸痛伴
A.0.02%NaF漱口液B.0.05%NaF漱口液C.0.2%NaF漱口液D.1.23%NaF凝胶E.2%NaF溶液每周漱口使用的是
低钾性碱中毒后期出现反常性酸性尿是因为
有机磷农药是目前使用较多的农药,用于有机磷中毒解救药物有
城市公共停车场应分()三类。
李某向陈某借款10万元,将一辆卡车抵押给陈某。抵押期间,卡车因车祸严重受损。李某将卡车送到某修理厂大修,后李某无力支付2万元修理费,修理厂遂将卡车留置。经催告,李某在约定的合同期间内仍未支付修理费。此时,李某亦无法偿还欠陈某的到期借款,陈某要求修理厂将卡车
光污染泛指影响自然环境,对人类正常生活、工作、休息和娱乐带来不利影响,损害人们观察物体的能力,引起人体不舒适感和损害人体健康的各种光。从广义上来说,光污染还包括了视觉污染,即城市环境中杂乱的视觉环境。根据上述定义,下列描述不涉及光污染的是(
下面关于解释程序和编译程序的论述,其中正确的一条是______。
A、Ithasseenasteadydeclineinitsprofits.B、Ithasbecomemuchmorecompetitive.C、Ithaslostmanycustomerstoforeignco
最新回复
(
0
)