首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2008年试题,22)设n元线性方程组Ax=b,其中(I)证明行列式|A|=(n+1)an;(Ⅱ)a为何值时,方程组有唯一解?求x1;(Ⅲ)a为何值时,方程组有无穷多解?求通解.
(2008年试题,22)设n元线性方程组Ax=b,其中(I)证明行列式|A|=(n+1)an;(Ⅱ)a为何值时,方程组有唯一解?求x1;(Ⅲ)a为何值时,方程组有无穷多解?求通解.
admin
2013-12-18
146
问题
(2008年试题,22)设n元线性方程组Ax=b,其中
(I)证明行列式|A|=(n+1)a
n
;(Ⅱ)a为何值时,方程组有唯一解?求x
1
;(Ⅲ)a为何值时,方程组有无穷多解?求通解.
选项
答案
(I)利用行列式性质,有[*](Ⅱ)若使方程组Ax=b有唯一解,则|A|=(n+1)a
n
≠0,即a≠0.则由克莱姆法则得[*](Ⅲ)若使方程组Ax=b有无穷多解,则|A|=(n+1)a
n
=0,即a=0.把a=0代入到矩阵A中,显然有r(A|B)=r(A)=n一1,方程组的基础解系含一个解向量,它的基础解系为k(1,0,0,…,0)T(k为任意常数).代入a=0后方程组化为[*]特解取为(0,1,0,…,0)
T
,则方程组Ax=b的通解为k(1,0,0,…,0)
T
+(0,1,0,…,0)
T
,其中的k为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/y934777K
0
考研数学二
相关试题推荐
函数f(x)=的第二类间断点的个数为
(2017年)若函数f(x)=在x=0处连续,则()
(2002年)设随机变量U在区间[-2,2]服从均匀分布,随机变量试求:(Ⅰ)X和Y的联合概率分布;(Ⅱ)D(X+Y)。
设函数f(x)在区间[0,2]上具有连续导数,f(0)=f(2)=0,M=,证明:若对任意的x∈(0,2),|f′(x)|≤M,则M=0.
(2009年)设曲线y=f(x),其中y=f(x)是可导函数,且f(x)>0。已知曲线y=f(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕x轴旋转一周所得的立体体积值是该曲边梯形面积值的πt倍,求该曲线方程。
(98年)设F1(χ)与F2(χ)分别为随机变量X1与X2的分布函数.为使F(χ)=a1F1(χ)-bF2(χ)是某一随机变量的分布函数,在下列给定的各组数值中应取【】
[2006年]设三阶实对称矩阵A的各行元素之和都为3,向量α1=[-1,2,-1]T,α2=[0,-1,1]T都是齐次线性方程组AX=0的解.求A的特征值和特征向量;
(00年)设函数f(χ)在[0,π]上连续,且∫0πf(χ)dχ=0,∫0πf(χ)cosχdχ=0.试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
(2007年)将函数展开成x一1的幂级数,并指出其收敛区间。
随机试题
贫血患者,Hb<60g/L、以往有输全血及血浆引起严重荨麻疹病史、本次输血治疗应选择哪一种红细胞制品?
患者,女性,34岁,左胸外伤后肋骨骨折,极度呼吸困难,发绀、烦躁不安。体检:脉搏细速,血压84/62mmHg,皮肤湿冷,气管右移,颈静脉充盈,头颈部和右胸皮下气肿,左胸廓饱满、肋间隙增宽、呼吸幅度降低,叩诊呈鼓音,右肺呼吸音消失。若该病人行胸腔闭式引流
A.甘露醇B.氢氯噻嗪(双氢克尿噻)C.呋塞米(速尿)D.链霉素E.螺内酯与呋塞米合用可增强耳毒性的药物是
下列不属于供水设施设备的维护管理规定的是()。
督察长由()提名。
某企业2006年1月1日的房产原值为3000万元,4月1日将其中原值为1000万元的临街房出租给某连锁商店,月租金5万元。当地政府规定允许按房产原值减除20%后的余值计税。该企业当年应缴纳房产税( )。
旅游团在各站停留期间,全陪的工作主要有()。
她A像B什么C也D发生似的,又上班了。
ASocioculturalApproachtoReading,LanguageandLiteracyI.WhattakingasocioculturalapproachactuallymeansA.Itrejectst
WhatdidJackdooverthesummer?
最新回复
(
0
)