首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设某地段在一个月内发生交通事故的次数X服从泊松分布,其中重大事故所占比例为α(0<α<1),据统计资料,该地段在一个月内发生8次交通事故是发生10次交通事故概率的2.5倍,求该地段在一年内最多有一个月发生重大交通事故的概率(假定各月发生交通事故情况互不影响
设某地段在一个月内发生交通事故的次数X服从泊松分布,其中重大事故所占比例为α(0<α<1),据统计资料,该地段在一个月内发生8次交通事故是发生10次交通事故概率的2.5倍,求该地段在一年内最多有一个月发生重大交通事故的概率(假定各月发生交通事故情况互不影响
admin
2017-10-25
43
问题
设某地段在一个月内发生交通事故的次数X服从泊松分布,其中重大事故所占比例为α(0<α<1),据统计资料,该地段在一个月内发生8次交通事故是发生10次交通事故概率的2.5倍,求该地段在一年内最多有一个月发生重大交通事故的概率(假定各月发生交通事故情况互不影响并设α=0.05).
选项
答案
先确定X的分布参数λ,由于P{X=8}=2.5P{X=10},即 [*]=36,λ=6(负根舍去). 我们可以计算出Y服从参数为λα的泊松分布,即 P{Y=m} =[*]e
-0.3
(m=0,1,2,…). 一个月内无重大交通事故的概率p=P{Y=0}=e
-0.3
. 一年内最多有一个月发生重大交通事故就是一年内至少有11个月无重大交通事故,其概率为P{Z=11}+P{z=12}=C
12
11
e
-3.3
(1一e
-0.3
)+e
-3.6
=0.142.
解析
此题首先应该计算一个月内该地段发生重大交通事故次数Y的概率分布,据此可求出概率p=P{Y=0},如果用Z表示一年内无重大交通事故的月份数,显然各个月是否有重大交通事故互不影响,因此Z服从二项分布B(12,p).
转载请注明原文地址:https://kaotiyun.com/show/8bX4777K
0
考研数学三
相关试题推荐
有甲、乙两个口袋,两袋中都有3个白球2个黑球,现从甲袋中任取一球放入乙袋,再从乙袋中任取4个球,设4个球中的黑球数用X表示,求X的分布律.
设随机变量X的分布函数为F(x),则下列函数中可作为某随机变量的分布函数的是().
设A为n阶非奇异矩阵,α是n维列向量,b为常数,P=(1)计算PQ;(2)证明PQ可逆的充分必要条件是αTA-1α≠b.
设函数f(x)满足关系f"(x)+f’2(x)=x,且f’(0)=0,则().
设n阶矩阵A的伴随矩阵A*≠O,且非齐次线性方程组AX=b有两个不同解η1,η2,则下列命题正确的是().
设随机变量X1,X2,…,Xm+n(m<n)独立同分布,其方差为σ2,令Y=。求:(1)D(Y),D(Z);(2)ρXY.
设总体X的密度函数为f(x)=,θ>0为未知参数,a>0为已知参数,求θ的极大似然估计量.
设总体X~N(μ,0.2),X1,X2,…,Xn+1为总体X的简单随机样本,记服从的分布.
已知X具有概率密度X1,X2,…,Xn为X的简单随机样本。求未知参数α的矩估计和最大似然估计.
一生产线生产的产品成箱包装,每箱的重量是随机的,假设每箱平均重量50千克,标准差为5千克,若用最大载重为5吨的汽车承运,试用中心极限定理说明每辆车最多可装多少箱,才能保障不超载的概率大于0.977(Ф(2)=0.977).
随机试题
汉语的“江”原指长江,“河”原指黄河。现在“江、河”泛指一切江河,它属于()。
Moreandmorestudentswanttostudyin"hot"majors.【C1】______aresult,manystudentswantto【C2】______theirinterestsandstu
麻黄具有而桂枝不具有的功效是
女性,28岁。腹胀、腹痛2个月,近1个月来出现便秘,伴发热、乏力及盗汗。查体:右下腹轻压痛,移动性浊音(+)。腹水化验为渗出性改变,PPD强阳性。最有可能的诊断是
工程勘察报告《勘察点平面位置图》是以地形图为底图,标有()。
某水利工程混凝土按平浇法施工,高峰月浇筑强度为8000m3/月,小时不均匀系数取1.4,每月工作天数按25d计,每天工作小时按20h计,最大混凝土块的浇筑面积为200m2,浇筑分层厚度为0.25m,所用混凝土初凝时间为3h,终凝时间为8h,混凝土熟料从出机
建设项目未完工程投资及预留费用可预计纳入竣工财务决算。大中型项目应控制在总概算的()以内。
社会主义初级阶段的基本经济制度是()。
十九大报告指出,十八大以来的五年,经济保持__________增长,在世界主要国家中名列前茅,国内生产总值从五十四万亿元增长到_________万亿元,稳居世界第二,对世界经济增长贡献率超过百分之三十。()
()是政府职能转变的关键。
最新回复
(
0
)