首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设某地段在一个月内发生交通事故的次数X服从泊松分布,其中重大事故所占比例为α(0<α<1),据统计资料,该地段在一个月内发生8次交通事故是发生10次交通事故概率的2.5倍,求该地段在一年内最多有一个月发生重大交通事故的概率(假定各月发生交通事故情况互不影响
设某地段在一个月内发生交通事故的次数X服从泊松分布,其中重大事故所占比例为α(0<α<1),据统计资料,该地段在一个月内发生8次交通事故是发生10次交通事故概率的2.5倍,求该地段在一年内最多有一个月发生重大交通事故的概率(假定各月发生交通事故情况互不影响
admin
2017-10-25
53
问题
设某地段在一个月内发生交通事故的次数X服从泊松分布,其中重大事故所占比例为α(0<α<1),据统计资料,该地段在一个月内发生8次交通事故是发生10次交通事故概率的2.5倍,求该地段在一年内最多有一个月发生重大交通事故的概率(假定各月发生交通事故情况互不影响并设α=0.05).
选项
答案
先确定X的分布参数λ,由于P{X=8}=2.5P{X=10},即 [*]=36,λ=6(负根舍去). 我们可以计算出Y服从参数为λα的泊松分布,即 P{Y=m} =[*]e
-0.3
(m=0,1,2,…). 一个月内无重大交通事故的概率p=P{Y=0}=e
-0.3
. 一年内最多有一个月发生重大交通事故就是一年内至少有11个月无重大交通事故,其概率为P{Z=11}+P{z=12}=C
12
11
e
-3.3
(1一e
-0.3
)+e
-3.6
=0.142.
解析
此题首先应该计算一个月内该地段发生重大交通事故次数Y的概率分布,据此可求出概率p=P{Y=0},如果用Z表示一年内无重大交通事故的月份数,显然各个月是否有重大交通事故互不影响,因此Z服从二项分布B(12,p).
转载请注明原文地址:https://kaotiyun.com/show/8bX4777K
0
考研数学三
相关试题推荐
设10件产品中有4件不合格,从中任取两件,已知两件中有一件不合格,则另一件产品也不合格的概率为________。
设f(x)在x=0的某邻域内二阶连续可导,且绝对收敛.
设有20人在某11层楼的底层乘电梯上楼,电梯在途中只下不上,每个乘客在哪一层下等可能,且乘客之间相互独立,求电梯停的次数的数学期望.
用变量代换x=sint将方程(1一x2)一4y=0化为y关于t的方程,并求微分方程的通解.
设二次方程x2一Xx+Y=0的两个根相互独立,且都在(0,2)上服从均匀分布,分别求X与y的概率密度.
一实习生用一台机器接连生产了三个同种零件,第i个零件是不合格品的概率(i=1,2,3),以X表示三个零件中合格品的个数,求X的分布律.
求二重积分其中D是由曲线,直线y=2,y=x所围成的平面区域.
甲、乙两人比赛射击,每个射击回合中取胜者得1分,假设每个射击回合中,甲胜的概率为α,乙胜的概率为β(α+β=1),比赛进行到一人比另一人多2分为止,多2分者最终获胜.求甲、乙最终获胜的概率.比赛是否有可能无限地一直进行下去?
已知X具有概率密度X1,X2,…,Xn为X的简单随机样本。求未知参数α的矩估计和最大似然估计.
设总体X的概率密度为其中θ>0是未知参数.从总体X中抽取简单随机样本X1,X2,…,Xn,记=min(X1,X2,…,Xn).(I)求总体X的分布函数F(x);(Ⅱ)求统计量的分布函数.
随机试题
夏商两代的司法审判制度特色包括()。
Whilewe’veknownforsometimeaboutthemanylong-termbenefitsofexercise,newresearchshowsaerobicexercisealsomayhave
下列不等式成立的是()
.注射剂制备工艺中,将药物制成无菌粉末的主要目的为()
目前工程中超声波法主要采用()来判别混凝土缺陷。
在儿童韵律活动的设计与组织巾,如何更好地发展儿童动作的随乐性?
解决我国民族问题的基本原则是()。
设二维离散型随机变量(X,Y)的概率分布如下表所示求P(X=2Y)。
Drivingthroughsnowstormonicyroadsforlongdistancesisamostnerve-rackingexperience.Itisaparadoxthatthesnow,co
Idon’tknowwhatitisaboutEnglishpubsthatIfindsodisappointing.【C1】______,pubsaresupposedtobetheEnglishman’s【C
最新回复
(
0
)