首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4是四维非零列向量组,A=(α1,α2,α3,α4),A*为A的伴随矩阵。已知方程组Ax=0的基础解系为k(1,0,2,0)T,则A*x=0的基础解系为( )
设α1,α2,α3,α4是四维非零列向量组,A=(α1,α2,α3,α4),A*为A的伴随矩阵。已知方程组Ax=0的基础解系为k(1,0,2,0)T,则A*x=0的基础解系为( )
admin
2019-02-01
61
问题
设α
1
,α
2
,α
3
,α
4
是四维非零列向量组,A=(α
1
,α
2
,α
3
,α
4
),A
*
为A的伴随矩阵。已知方程组Ax=0的基础解系为k(1,0,2,0)
T
,则A
*
x=0的基础解系为( )
选项
A、α
1
,α
2
,α
3
。
B、α
1
+α
2
,α
2
+α
3
,α
1
+α
3
。
C、α
2
,α
3
,α
4
。
D、α
1
+α
2
,α
2
+α
3
,α
3
+α
4
,α
4
+α
1
。
答案
C
解析
方程组Ax=0的基础解系只含一个解向量,所以四阶方阵A的秩,r(A)=4—1=3,则其伴随矩阵A
*
的秩r(A
*
)=1,于是方程组A
*
x=0的基础解系含有三个线性无关的解向量。又A
*
(α
1
,α
2
,α
3
,α
4
)=A
*
A=|A|E=D,所以向量α
1
,α
2
,α
3
,α
4
都是方程组A
*
x=0的解。将(1,0,2,0)
T
。代入方程组AX=0可得α
1
+2α
3
=0,这说明α
1
可由向量组α
2
,α
3
,α
4
线性表出,而向量组α
1
,α
2
,α
3
,α
4
的秩等于3,所以向量组α
2
,α
3
,α
4
必线性无关。所以选c。事实上,由α
1
+2α
3
=0可知向量组α
1
,α
2
,α
3
线性相关,选项A不正确;显然,选项B中的向量都能被α
1
,α
2
,α
3
线性表出,说明向量组α
1
+α
2
,α
2
+α
3
,α
1
+α
3
线性相关,选项B不正确;而选项D中的向量组含有四个向量,不是基础解系,所以选型D也不正确。
转载请注明原文地址:https://kaotiyun.com/show/8gj4777K
0
考研数学二
相关试题推荐
设A是三阶矩阵,ξ1,ξ2,ξ3是三个线性无关的三维列向量,满足Aξi=ξi,i=1,2,3,则A=____________.
设y=求y(n)(0).
计算不定积分.
变换二次积分的积分次序:。
求曲线y=3-|x2-1|与x轴围成的封闭区域绕直线y=3旋转所得的旋转体的体积.
设f(x)二阶连续可导,f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x2y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
求满足初始条件y’’+2x(y’)2=0,y(0)=1,y’(0)=1的特解.
已知齐次方程组为其中ai≠0.(1)讨论a1,a2,…,an和b满足何种关系时方程组有非零解;(2)在方程组有非零解时,写出一个基础解系.
某闸门的形状与大小如图2.11所示,其中直线l为对称轴,闸门的上部为矩形ABCD,下部由二次抛物线与线段AB所围成,当水面与闸门的上端相平时,欲使闸门矩形部分承受的水压力与闸门下部承受的压力之比为5:4,闸门矩形部分的高h应为多少m(米)?
设f(x)在[a,b]上存在二阶导数,f(a)=f(b)=0,并满足f″(x)+[fˊ(x)]2-4f(x)=0.则在区间(a,b)内f(x)()
随机试题
A.脐部圆形包块,加腹压后包块突出,平卧时包块消失B.卵黄管的脐端未闭,遗留较短的盲管C.脐带周围发生缺损,腹腔内脏脱出体外D.出生后见胃肠突出于腹壁外,脐和脐带正常,腹壁裂孔在脐的右侧并为纵向E.卵黄管的脐端有残留的黏膜形成息肉样红色突起,少量液
A、祛暑利湿,补气生津B、祛暑除湿,和胃消食C、祛暑解表,清热生津D、解表化湿,理气和中E、清热解毒,利湿化浊六合定中丸的功效()。
第二类精神药品处方印刷用纸为
抢救青霉素过敏性休克的首选药物是
EVA、PE类聚合物改性沥青混合料的废弃温度为()。
某公司为获得一项工程合同,拟向工程发包方的有关人员支付好处费8万元,公司市场部持公司的批示到财务部领取该笔款项。财务部经理谢某认为该项支出不符合有关规定,但考虑到公司主要领导已作了批示,遂同意拨付了款项。对谢某做法的下列认定中正确的是()。
我国对资本主义工商业进行社会主义改造的政策是和平赎买。()
小刚在一次演讲比赛中有五名裁判给他打分,除去最低分外,他的平均成绩是96分;加上最低分,它的平均成绩下降了3分。问其中打的最低分是多少?()
设f(x)连续,其中V={(x,y,z)|x2+y2≤t2,0≤z≤h}(t>0),求其中,[x]表示不超过x的最大整数.
WhatcanbecitedtoshowMr.Eliasson’sunderstandingoftotal-immersionart?
最新回复
(
0
)