首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,α3线性无关,证明:α1+α2+α3,α1+2α2+3α3,α1+4α2+9α3线性无关.
设向量组α1,α2,α3线性无关,证明:α1+α2+α3,α1+2α2+3α3,α1+4α2+9α3线性无关.
admin
2017-12-23
60
问题
设向量组α
1
,α
2
,α
3
线性无关,证明:α
1
+α
2
+α
3
,α
1
+2α
2
+3α
3
,α
1
+4α
2
+9α
3
线性无关.
选项
答案
方法一 令k
1
(α
1
+α
2
+α
3
)+k
2
(α
1
+2α
2
+3α
3
)+k
3
(α
1
+4α
2
+9α
3
)=0,即 (k
1
+k
2
+k
3
)α
1
+(k
1
+2k
2
+4k
3
)α
2
+(k
1
+3k
2
+9k
3
)α
3
=0, 因为α
1
,α
2
,α
3
线性无关,所以有[*] 而D=[*](i-j)=2≠0,由克拉默法则得k
1
=k
2
=k
3
=0, 所以α
1
+α
2
+α
3
,α
1
+2α
2
+3α
3
,α
1
+4α
2
+9α
3
线性无关. 方法二 令A=(α
1
,α
2
,α
3
), B=(α
1
+α
2
+α
3
,α
1
+2α
2
+3α
3
,α
1
+4α
2
+9α
3
), 则B=A[*]可逆,所以r(B)=r(A)=3, 故α
1
+α
2
+α
3
,α
1
+2α
2
+3α
3
,α
1
+4α
2
+9α
3
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/8hk4777K
0
考研数学二
相关试题推荐
A、 B、 C、 D、 B
[*]
计算机有120个终端,每个终端在一小时内平均有3min使用打印机,假定各终端使用打印机与否相互独立,求至少有10个终端同时使用打印机的概率.
设f(x)在[0,1]上连续,取正值且单调减少,证明
设矩阵A与B相似,且求可逆矩阵P,使P-1AP=B.
本题为“1x”型未定式,除可以利用第二类重要极限进行计算或化为指数函数计算外,由于已知数列的表达式,也可将n换为x转化为函数极限进行计算.一般[*]
设A从原点出发,以固定速度v0沿y轴正向行驶,B从(x0,0)出发(x0<0),以始终指向点A的固定速度v1,朝A追去,求B的轨迹方程.
设函数z=f(u),方程u=ψ(u)+∫yx(f)df确定“是x,y的函数,其中f(u),ψ(u)可微;p(t),ψ’(u)连续,且ψ’(u)≠1.求.
设A为10×10矩阵计算行列式|A-λE|,其中E为10阶单位矩阵,λ为常数.
设A为3阶矩阵,λ1,λ2,λ3是A的三个不同特征值,对应的特征向量为α1,α2,α3,令β=α1+α2+α3.(1)证明:β,Aβ,A2β线性无关;(2)若A3β=Aβ,求秩r(A—E)及行列式|A+2E|.
随机试题
枇杷叶的功效是浙贝母的功效是
根据《节约能源法》的规定,为了引导用能单位和个人使用先进的节能技术、节能产品,国务院管理节能工作的部门会同国务院有关部门()。[2009年真题]
生产的监督管理有很多形式,()和颁发管理有关安全生产事项的许可是两种十分重要的形式。
需重新编制建设工程档案的工程有()。
丁公司10月20日至月末的银行存款日记账所记录的经济业务如下:①20日,收到销货款转账支票#011,金额为8800元。②21日,开出支票#01,用以支付购入材料的货款20000元。③23日,开出支票#02,支付购料的运杂费1000元。④26日,收到
Althoughdividedbyreligion,residentsoftheUnitedStatesareunitedbynationalholidayssuchasThanksgivingandIndependen
坚持向科技、教育要警力,要战斗力,就需要把人才放在优先发展的战略地位,不断提高公安队伍的文化素质和业务素质,提高公安装备的科技含量,用现代科技武装公安机关,以适应打击日益严重的职业化、技能化、智能化的刑事犯罪的需要。()
某公路收费站去年的收费额比今年的收费额少,估计明年收费额比今年的收费额多,那么明年的收费额估计要比去年的收费额多几分之几?
以下叙述中错误的是()。
FederalExpressisacompanythatspecializesinrapidovernightdeliveryofhigh-prioritypackages.Thefirstcompanyofitsty
最新回复
(
0
)