首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组B=0与ABX=0是同解方程组.
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组B=0与ABX=0是同解方程组.
admin
2016-10-24
68
问题
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组B=0与ABX=0是同解方程组.
选项
答案
首先,方程组BX=0的解一定是方程组ABX=0的解,令r(B)=r且ξ
1
,ξ
2
,…,ξ
n一r
是方程组BX=0的基础解系,现设方程组ABX=0有一个解η
0
不是方程组BX=0的解,即Bη
0
≠0,显然ξ
1
,ξ
2
,…,ξ
n一r
,η
0
线性无关,若ξ
1
,ξ
2
,…,ξ
n一r
,η
0
线性相关,则存在不全为零的常数k
1
,k
2
,…,k
n一r
,k
0
,使得k
1
ξ
1
+k
2
ξ
2
+…+k
n一r
ξ
n一r
…+k
0
η
0
=0,若k
0
=0,则k
1
ξ
1
+k
2
ξ
2
+…+k
n一r
ξ
n一r
=0,因为ξ
1
,ξ
2
,…,ξ
n一r
线性无关,所以k
1
=k
2
=…=k
n一r
=0,从而ξ
1
,ξ
2
,…,ξ
n一r
,η
0
线性无关,所以k
0
≠0,故η
0
可由ξ
1
,ξ
2
,…,ξ
n一r
线性表示,由齐次线性方程组解的结构,有Bη
0
=0,矛盾,所以ξ
1
,ξ
2
,…,ξ
n一r
,η
0
线性无关,且为方程组ABX=0的解,从而n一r(AB)≥n一r+1,r(AB)≤r一1,这与r(B)=r(AB)矛盾,故方程组B=0与ABX=0同解.
解析
转载请注明原文地址:https://kaotiyun.com/show/8sH4777K
0
考研数学三
相关试题推荐
设有方程xn+nx-1=0,其中n为正整数,证明此方程存在唯一正实根xn,并证明当a>1时,级数收敛.
设向量的方向余弦分别满足(1)cosγ=0;(2)cosα=1;(3)cosα=cosγ=0,问这些向量与坐标或坐标面的关系如何?
化下列方程为齐次型方程,并求出通解:(1)(2y-x-5)dx-(2x-y+4)dy=0;(2)(2x-5y+3)dx-(2x+4y-6)dy=0;(3)(x+y)dx+(3x+3y-4)dy=0;(4)(y-x+1)dx-(y+x+5)dy=0.
设A为2阶矩阵,α1,α2为线性无关的2维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为________.
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:t为何值时,向量组α1,α2,α3线性相关?
设n元线性方程组Ax=b,其中,x=(x1,…,xn)T,b=(1,0,…,0)T.(I)证明行列式|A|=(n+1)an;(Ⅱ)a为何值时,方程组有唯一解?求x1;(Ⅲ)a为何值时,方程组有无穷多解?求通解.
设B=(β1,β2,β3),其βi(i=1,2,3)为三维列向量,由于B≠0,所以至少有一个非零的列向量,不妨设β1≠0,由于AB=A(β1,β1,β3)=(Aβ1,Aβ2,Aβ3)=0,→Aβ1=0,即β1为齐次线性方程组AX=0的非零解,于是系数矩阵的
设总体X的概率密度为F(x)=1/2e-|x|(-∞<x<+∞),X1,X2,…,Xn为总体X的简单随机样本,其样本方差S2,则E(S2)=__________.
设总体X的概率密度为其中θ为未知参数且大于零.X1,X2,…,Xn为来自总体X的简单随机样本.求θ的矩估计量;
已知线性方程组(Ⅰ)a,b为何值时,方程组有解?(Ⅱ)方程组有解时,求出方程组的导出组的一个基础解系:(Ⅲ)方程组有解时,求出方程组的全部解.
随机试题
在关于城镇土地使用税的陈述中,错误的有( )。
患者男,46岁。脾大,骨髓中淋巴细胞比例为76%,拟诊为多毛细胞白血病,首选的组织化学检查是
房地产开发企业申请商品房预售许可,除了提交商品房预售许可申请数、开发企业的营业执照和资质证书外,还需要提交的材料有()。
海关可以行使“径行开验”的权利,即无须任何见证人到场的情况下自行开拆货物,进行查验。()
下列不属于物质财产保险的是()。
在组织咨询过程中,组织结构的设计非常重要,基本的组织结构类型主要包括()。
Childrenmodelthemselveslargelyontheirparents.Theydosomainlythroughidentification.Childrenidentify【C1】______apare
下列叙述中正确的是()。
Itisoftensaidthatpolitenesscostsnothing.Infact,itseemsthatalittlemorecourtesycould【C1】______businesses£5bil
A.agreewithB.meaningfulC.shareD.experienceE.demandF.undertakeG.normsH.stuffI.meanJ.regularlyK.natu
最新回复
(
0
)