首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ)。
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ)。
admin
2019-05-11
62
问题
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明存在ξ∈(a,b),使得f
’’
(ξ)=g
’’
(ξ)。
选项
答案
构造辅助函数F(x)=f(x)一g(x),由题设有F(a)=F(b)=0。又f(x),g(x)在(a,b) 内具有相等的最大值,不妨设存在x
1
≤x
2
,x
1
,x
2
∈(a,b)使得f(x
1
)=M=[*]。 若x
1
=x
2
,令c=x
1
,则F(c)=0。 若x
1
<x
2
,因F(x
1
)=f(x
1
)一g(x
1
)≥0,F(x
2
)=f(x
2
)一g(x
2
)≤0,由介值定理知,存在c∈[x
1
,x
2
][*](a,b),使F(c)=0。 在区间[a,c],[c,b]上分别利用罗尔定理知,存在ξ
1
∈(a,c),ξ
2
∈(c,b),使得 F
’
(ξ
1
)=F
’
(ξ
2
)=0。 再对F
’
(x)在区间[ξ
1
,ξ
2
]上应用罗尔定理,知存在ξ∈(ξ
1
,ξ
2
)[*](a,b),有F
’’
(ξ)=0,即 f
’’
(ξ)=g
’’
(ξ)。
解析
转载请注明原文地址:https://kaotiyun.com/show/8uV4777K
0
考研数学二
相关试题推荐
极坐标下的累次积分f(rcosθ,rsinθ)rdr等于().
设z=sinχy,求.
求微分方程χy〞+3y′=0的通解.
求极限
设α,β为四维非零列向量,且α⊥β,令A=αβT,则A的线性无关特征向量个数为()
设K,L,δ为正的常数,则=_______.
曲线(χ-1)3=y2上点(5,8)处的切线方程是________.
函数y=与直线x=0,x=t(t>0)及y=0围成一曲边梯形。该曲边梯形绕x轴旋转一周得一旋转体,其体积为V(t),侧面积为S(t),在x=t处的底面积为F(t)。计算极限。
求极限。
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。利用上问的结果判断矩阵B一CTA-1C是否为正定矩阵,并证明结论。
随机试题
血栓细胞的结构是()
求幂级数的收敛域及和函数,并求级数的和.
关于团体决策的方法,不正确的叙述是
子宫内膜癌最常见的病理类型为
干燥脱屑性唇炎的主要特征是
嗜人类上皮细胞的病毒是嗜神经病毒是
患儿,1岁,因食欲差,母乳少,以米糊、稀饭喂养,未添加其他辅食,诊断为营养不良Ⅰ度。蛋白质一热能营养不良患儿皮下脂肪逐渐减少或消失,首先累及的部位是
探望病人通常会送上一束鲜花。但某国曾有报道说,医院花瓶养花的水可能含有很多细菌,鲜花会在夜间与病人争夺氧气,还可能影响病房里电子设备的工作。这引起了人们对鲜花的恐慌,该国一些医院甚至禁止在病房内摆放鲜花。尽管后来证实鲜花并未导致更多的病人受感染,并且权威部
HenryDavidThoreau—WhyIWenttotheWoodsLetusspendonedayasdeliberatelyasNature,andnotbethrownoffthetrack
ThemodestfarmrunbySolomyLestonandherhusband,afewpicturesqueacresinthecentralAfricancountryofMalawi,isinmo
最新回复
(
0
)