首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设一元函数f(x)有下列四条性质。 ①f(x)在[a,b]连续; ②f(x)在[a,b]可积; ③f(x)在[a,b]存在原函数; ④f(x)在[a,b]可导。 若用表示可由性质P推出性质Q,则有( )
设一元函数f(x)有下列四条性质。 ①f(x)在[a,b]连续; ②f(x)在[a,b]可积; ③f(x)在[a,b]存在原函数; ④f(x)在[a,b]可导。 若用表示可由性质P推出性质Q,则有( )
admin
2017-01-21
59
问题
设一元函数f(x)有下列四条性质。
①f(x)在[a,b]连续;
②f(x)在[a,b]可积;
③f(x)在[a,b]存在原函数;
④f(x)在[a,b]可导。
若用
表示可由性质P推出性质Q,则有( )
选项
A、
B、
C、
D、
答案
C
解析
这是讨论函数f(x)在区间[a,b]上的可导性、连续性及可积性与原函数存在性间的关系问题。由f(x)在[a,b]上可导
f(x)在[a,b]可积且存在原函数。故选C。
转载请注明原文地址:https://kaotiyun.com/show/99H4777K
0
考研数学三
相关试题推荐
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:“20件产品全是合格品”与“20件产品中至多有一件是废品”.
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:“20件产品全是合格品”与“20件产品中至少有一件是废品”;
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:x>20与x
设(x0,y0)是抛物线y=ax2+bx+c上的一点,若在该点的切线过原点,则系数应满足的关系是_______.
设函数f(x)在[0,π]上连续,且试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使(ξ1)=f(ξ2)=0.
设f(x)在[0,1]上二阶可导且f〞(x)<0,证明:
假设测量的随机误差X~N(0,102),试求在100次独立重复测量中,至少有三次测量误差的绝对值大于6的概率α,并用泊松分布求出α的近似值(小数点后取两位有效数字).[附表]
设总体X的概率密度为而X1,X2…,Xn是来自总体X的简单随机样本,则未知参数θ的矩估计量为_________.
设两个随机变量X与Y独立同分布,P{X=-1}=P{Y=-1}=1/2,P{X=1}=P{Y=1}=1/2,则下列各式中成立的是().
设B=(β1,β2,β3),其βi(i=1,2,3)为三维列向量,由于B≠0,所以至少有一个非零的列向量,不妨设β1≠0,由于AB=A(β1,β1,β3)=(Aβ1,Aβ2,Aβ3)=0,→Aβ1=0,即β1为齐次线性方程组AX=0的非零解,于是系数矩阵的
随机试题
我国国家赔偿法的归责原则是违法原则,下列对违法的含义正确的理解是()。
Ipassedmyexamsbutitwasalongtime______myfriendsaboutit.
男性,65岁,反复咳嗽、咳痰30余年,心悸、气促、下肢间歇性水肿3年,病情加重伴畏寒发热1周入院。体检:T:38℃,呼吸急促,口唇发绀,双肺叩诊过清音,中下肺有湿哕音,心率110次/分,心律齐,无杂音,双下肢重度水肿。假设该病例呼吸困难,突然进一步加
人参、鹿茸、冬虫夏草等中药都是人们非常喜爱的中药材,能够滋补身体,增强人体免疫力。丹参也是人们非常广泛使用的中药,它的功效有
根据合同法律制度的规定,下列各项中,( )属于可撤销要约的情形。
某企业为增值税一般纳税人,兼营增值税应税项目和免税项目。2010年5月应税项目取得不含税销售额1200万元,适用税率17%,免税项目取得销售额1000万元;当月购进用于应税项目的材料支付价款。700万元,适用税率17%,购进用于免税项目的材料支付价款400
《桃花源记》中描述:“缘溪行,忘路之远近。忽逢桃花林,……林尽水源,便得一山,山有小口,仿佛若有光。便舍船,从口入。初极狭,才通人。复行数十步,豁然开朗。土地平旷,屋舍俨然,有良田美池桑竹之属。”“桃花源”的地形最可能是()。
教育形成自己相对独立形态的标志是()。
他胜任这项工作,这是毫无疑问的。
EveryonereadssomethingaboutSherlockHolmes,whoisoneoftheworld’sgreatestdetectives.Theinventor,SirArthurIgnatius
最新回复
(
0
)