首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
齐次线性方程组的系数矩阵记为A.若存在3阶矩阵B≠0,使得AB=0,则( ).
齐次线性方程组的系数矩阵记为A.若存在3阶矩阵B≠0,使得AB=0,则( ).
admin
2020-06-05
75
问题
齐次线性方程组
的系数矩阵记为A.若存在3阶矩阵B≠0,使得AB=0,则( ).
选项
A、λ=﹣2且|B|=0
B、λ=﹣2且|B|≠0
C、λ=1且|B|=0
D、λ=1且|B|≠0
答案
C
解析
将矩阵B按列分块,则由题设条件有
AB=A(β
1
,β
2
,β
3
)=(Aβ
1
,Aβ
2
,Aβ
3
)=0
即Aβ
j
=0(j=1,2,3),这说明矩阵B的列向量都是齐次线性方程组Ax=0的解.又由B≠0,知齐次线性方程组Ax=0存在非零解,从而R(A)﹤3.考虑到A为3阶方阵,故有
即λ=1,排除(A),(B).
若|B|≠0,则矩阵B可逆.以B
﹣1
右乘AB=0,得ABB
﹣1
=0B
﹣1
,即A=0.这与A为非零矩阵矛盾,(D)不正确.
事实上,由于A为非零矩阵,那么R(A)﹥1,进而R
s
=3-R(A)﹤3.又由AB=0可知B的列向量是齐次线性方程组Ax=0的解,故而R(B)≤R
s
﹤3,于是|B|=0.或将AB=0两边取转置,得B
T
A
T
=0.由A是非零矩阵可知,齐次线性方程组B
T
x=0有非零解,从而方阵B
T
为降秩矩阵,即|B
T
|=|B|=0.
转载请注明原文地址:https://kaotiyun.com/show/9Av4777K
0
考研数学一
相关试题推荐
设A是m×n矩阵,则方程组AX=b有唯一解的充分必要条件是()
设函数y1(x),y2(x),y3(x)线性无关,而且都是非齐次线性方程y"+p(x)y’+q(x)y=f(x)(6.2)的解,C1,C2为任意常数,则该非齐次方程的通解是
下列矩阵中不能相似对角化的是
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件为()
设n维行向量α=,矩阵A=E—αTα,B=E+2αTα,则AB=
设A,B,C都是n阶矩阵,满足B=E+AB,C=A+CA,则B—C为
设f(x)是二阶常系数非齐次线性微分方程y’’+py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,().
设A是m×n矩阵,则方程组AX=b有唯一解的充分必要条件是()
设ξ1,ξ2是非齐次方程组AX=β的两个不同的解,η1,η2为它的导出组AX=0的一个基础解系,则它的通解为()
随机试题
氧化铁堵塞是由于长期注水,金属管道腐蚀生成氧化铁、氢氧化铁和硫化亚铁,它们都是()水的物质,随注入水进入地层堵塞地层中的孔隙。
Didyoueverhavesomeone’snameonthetipofyourtongueandyetyouwereunabletorecallit?【C1】______thishappensagain,do
以利益均衡作为价值判断标准来配置卫生资源,体现的卫生法基本原则是
A.茯苓B.猪苓C.泽泻D.薏苡仁E.滑石
按照工程质量事故分类标准,以下可作为单独判定为重大质量事故的事实依据有()。
根据《行政复议法实施条例》,行政复议机关在申清人的行政复议请求范围内,不得作出对申请人更为不利的行政复议决定。该规定体现了行政复议的()。
外国旅游者人出境的有效证件包括()。
下列有关我国史实的相关记载,出现时间最早的是()。
散光产生的主要原因是
目前,云计算(cloudcomputing)已成为信息化建设的主要形态。以下关于云计算的叙述中,不正确的是()。
最新回复
(
0
)