首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设数列{an}满足条件:a0=3,a1=1,an—2一n(n一1)an=0(n≥2)。S(x)是幂级数anxn的和函数。 (Ⅰ)证明:S"(x)一S(x)=0; (Ⅱ)求S(x)的表达式。
设数列{an}满足条件:a0=3,a1=1,an—2一n(n一1)an=0(n≥2)。S(x)是幂级数anxn的和函数。 (Ⅰ)证明:S"(x)一S(x)=0; (Ⅱ)求S(x)的表达式。
admin
2017-12-29
60
问题
设数列{a
n
}满足条件:a
0
=3,a
1
=1,a
n—2
一n(n一1)a
n
=0(n≥2)。S(x)是幂级数
a
n
x
n
的和函数。
(Ⅰ)证明:S"(x)一S(x)=0;
(Ⅱ)求S(x)的表达式。
选项
答案
(Ⅰ)证明:由题意得 S’(x)=[*]na
n
x
n—1
, S"(x)=[*]n(n一1)a
n
x
n—2
=[*](n+1)(n+2)a
n
+2x
n
, 因为由已知条件得a
n
=(n+1)(n+2)a
n+2
(n=0,1,2,…),所以S"(x)=S(x),即 S"(x)一S(x)=0。 (Ⅱ)S"(x)一S(x)=0为二阶常系数齐次线性微分方程,其特征方程为λ
2
一1=0,从而A=±1,于是 S(x)=C
1
e
—x
+C
2
e
x
, 由S(0)=a
0
=3,S’(0)=a
1
=1,得 [*] 解得C
1
=1,C
2
=2,所以S(x)=e
—x
+2e
x
。
解析
转载请注明原文地址:https://kaotiyun.com/show/9GX4777K
0
考研数学三
相关试题推荐
交换下列累次积分的积分次序.
设α1,α2,…,αn-1是n个实数,方阵若A有n个互异的特征值λ1,λ2,…,λn,求可逆阵P使P-1AP=A.
设三元非齐次线性方程组的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,一1,1]T,η3+η1=[0,2,0]T,求该非齐次方程的通解.
求下列极限.
判别级数的敛散性.
求微分方程(3x2+2xy—y2)dx+(x2一2xy)dy=0的通解.
用变限积分表示满足上述初值条件的解y(x);
设随机变量X1,…,Xn,…相互独立,记Yn=X2n一X2n-1(n≥1),根据大数定律,当n→∞时依概率收敛到零,只要{Xn:n≥1}()
假设二维随机变量(X,Y)在矩形区域G={(x,y)|0≤x≤2,0≤y≤1}上服从均匀分布,记(I)求U和V的联合分布;(Ⅱ)求U和V的相关系数ρ.
(87年)下列函数在其定义域内连续的是【】
随机试题
集体合同的时间效力的表现形式有()
下列关于NHL的病理类型中,哪些属于中度恶性?
(2007年第75题)下列属于退行性变的疾病是
下列行为中,属于无效民事行为的有()。
人们常说“教学有法,教无定法”,此话反映了教师劳动的()。(2014·河南)
Wherearetheynow?
Electronicmailhasbecomeanextremelyimportantandpopularmeansofcommunication.Theconvenienceandefficiencyofelec
JudgingbythewildlycheeringaudienceattheorgyofconsumerismthatwasOprahWinfrey’s"UltimateFavouriteThings"show,A
A、Theykeepallthepropertyoftheorganization.B、Theyareresponsibleformostofthebusinessdebts.C、Theytakemorerespon
Postgraduatedilemmas[A]Decidingwhetherornottobecomeapostgraduatecanbeadaunting(令人畏缩的)prospect.Evenifyouaresure
最新回复
(
0
)