首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2一α3,如果β=α1+α2+α3+α4,求线性方程组AX=β的通解.
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2一α3,如果β=α1+α2+α3+α4,求线性方程组AX=β的通解.
admin
2015-07-22
46
问题
已知4阶方阵A=[α
1
,α
2
,α
3
,α
4
],α
1
,α
2
,α
3
,α
4
均为4维列向量,其中α
2
,α
3
,α
4
线性无关,α
1
=2α
2
一α
3
,如果β=α
1
+α
2
+α
3
+α
4
,求线性方程组AX=β的通解.
选项
答案
由α
1
=2α
2
一α
3
及α
2
,α
3
,α
4
线性无关组知r(A)-=r(α
1
,α
2
,α
3
,α
4
)=3.且对应齐次方程组AX=O有通解k[1,一2,1,0]
T
,又β=α
1
+α
2
+α
3
+α
4
,即 [α
1
,α
2
,α
3
,α
4
]X=β=[α
1
+α
2
+α
3
+α
4
]=[α
1
,α
2
,α
3
,α
4
] [*] 故非齐次方程组有特解η=[1,1,1,1]
T
,故方程组的通解为k[1,一2,1,0]
T
+[1,1,1,1]
T
.
解析
转载请注明原文地址:https://kaotiyun.com/show/gMU4777K
0
考研数学三
相关试题推荐
2022年4月20日召开的国务院常务会议指出,能源是经济社会发展的基础支撑,要立足我国国情,应对外部环境新挑战,抓住重点,强化能源保供,未雨绸缪推进条件成熟、发展需要的能源项目开工建设,促进能源结构持续优化。要()。①发挥煤炭的主体能
新华社北京6月13日电,近日,由生态环境部、国家发展和改革委员会、科学技术部等17部门联合印发的《国家适应气候变化战略2035》提出“到()年,气候变化监测预警能力达到同期国际先进水平,气候风险管理和防范体系基本成熟,重特大气候相关灾害
党的十九大报告提出的新时代党的建设原则、方针、主线、总体布局、目标,既指明方向路径又指出思路要求,既有具体抓手又有检验标准,它们相互联系、密不可分,共同构成了总要求、总遵循。其中,新时代党的建设的主线是
垄断是指少数资本主义大企业,为了获得高额利润,通过相互协议或联合,对一个或几个部门商品的生产、销售和价格进行操纵与控制。垄断产生的原因有
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设向量组α1,α3,α3线性无关,问常数a,b,c满足什么条件时,aα1-α2,bα2-α3,cα3-α1线性相关?
设α1,α2,…,αr(r≤n)是互不相同的数,αi=(1,αi,αi2,…,αin-1)(i=1,2,…,r),问α1,α2,…,αr是否线性相关?
设u(x,y,z),v(x,y,z)是两个定义在闭区域Ω上的具有二阶连续偏导数的函数,依次表示u(x,y,z),v(x,y,z)沿∑的外法线方向的方向导数.证明:其中∑是空间闭区域Ω的整个边界曲面.
求下列微分方程的通解(1)xyˊ+y-2y3=0;(2)xyˊlnx+y=x(1+lnx);(3)yˊ+ex(1-e-y)=0;(4)yy〞-yˊ2-1=0.
设非齐次线性微分方程yˊ+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解是().。
随机试题
腹腔动脉开口的平面位于
某孕妇,末次月经不详,自述停经半年多,检查发现子宫底位于脐与剑突之间,胎心140次/分。此阶段该孕妇必须做的检查是
白虎汤的主治证候不包括
加辅料炒法的主要目的是
设备制造阶段的监理工作包括( )。
下列关于回购交易的说法中,正确的有()。
国家权力机关有权审查有关公安工作经费的(),并作出批准与否的决定。
马克思主义哲学产生前,近代哲学具有的共同的特点()。
2015年我国民办小学入学人数同比增加量比2012年的多()倍。
Whichofthefollowingisthebesttitleforthepassage?What’stheauthor’stoneinthelastsentenceofthepassage?
最新回复
(
0
)