设f(x)在[a,b]上连续,且对任意的t∈[0,1]及任意的x1,x2∈[a,b]满足:f[tx1+(1-t)x2]≤tf(x1)+(1-t)f(x2). 证明:f()≤f(x)dx≤

admin2019-11-25  14

问题 设f(x)在[a,b]上连续,且对任意的t∈[0,1]及任意的x1,x2∈[a,b]满足:f[tx1+(1-t)x2]≤tf(x1)+(1-t)f(x2).
证明:f()≤f(x)dx≤

选项

答案因为[*]f(x)dx[*](b-a)[*]f[at+(1-t)b]dt ≤(b-a)[f(a)[*]tdt+f(b)[*](1-t)dt]=(b-a)[*] 所以[*]f(x)dx≤[*]. 又[*]f(x)dx=[*]f(x)dx+[*]f(x)dx=[*][f(a+b-x)+f(x)]dx =2[*][[*]f(a+b-x)+[*]f(x))dx ≥2[*]f[[*](a+b-x)+[*]x]dx=(b-a)f[*], 所以[*]f(x)dx≥f[*]),故f([*])≤[*]f(x)dx≤[*].

解析
转载请注明原文地址:https://kaotiyun.com/show/9bD4777K
0

最新回复(0)