首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,β1,β2都是四维列向量,且|A|=|α1,α2,α3,β1|=m,|B|=|α1,α2,β2,α3|=n,则|α3,α2,α1,β1+β2|为( ).
设α1,α2,α3,β1,β2都是四维列向量,且|A|=|α1,α2,α3,β1|=m,|B|=|α1,α2,β2,α3|=n,则|α3,α2,α1,β1+β2|为( ).
admin
2015-07-22
60
问题
设α
1
,α
2
,α
3
,β
1
,β
2
都是四维列向量,且|A|=|α
1
,α
2
,α
3
,β
1
|=m,|B|=|α
1
,α
2
,β
2
,α
3
|=n,则|α
3
,α
2
,α
1
,β
1
+β
2
|为( ).
选项
A、m+n
B、m一n
C、一(m+n)
D、n一m
答案
D
解析
|α
3
,α
2
,α
1
,β
1
+β
2
|=|α
3
,α
2
,α
1
,β
1
|+|α
3
,α
2
,α
1
,β
2
|=一|α
1
,α
2
,α
3
,β
1
|—|α
1
,α
2
,α
3
,β
2
|=一|α
1
,α
2
,α
3
,β
1
|+|α
1
,α
2
,β
2
,α
3
|=n一m,
选(D).
转载请注明原文地址:https://kaotiyun.com/show/9bw4777K
0
考研数学一
相关试题推荐
e-1
设求f’(x)并讨论f’(x)在x=0处的连续性.
以y=C1e-2x+C2ex+cosx为通解的二阶常系数非齐次线性微分方程为________.
设A是m×n阶实矩阵,证明:(1)r(ATA)=r(A);(2)ATAX=ATb一定有解.
Y服从参数X的指数分布,而X是服从[1,2]上的均匀分布的随机变量.Y=1时X的条件期望;
Y服从参数X的指数分布,而X是服从[1,2]上的均匀分布的随机变量.求已知Y=y时X的条件密度函数;
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.(1)证明:=n:(2)设ξ1,ξ2,…,ξr与η1,η2,…,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,…,ξr,η1,η2,…,ηs线性无关.
A,B为n阶矩阵且r(A)+r(B)<n.证明:方程组AX=0与BX=0有公共的非零解.
设矩阵问当k为何值时,存在可逆矩阵P,使得P一1AP为对角矩阵?并求出P和相应的对角矩阵.
就a的不同取值情况,确定方程lnχ=χa(a>0)实根的个数.
随机试题
急性胆囊炎最严重的并发症是
属于有效训导的方法是
A.双目镜筒中的左右两光束不平行B.不可选用复消色差物镜C.光源是紫外光D.光源是红外光E.物镜、聚光镜和光源颠倒放置偏光显微镜
内部转移价格制定时,单位产品的协商价格的上限是市价,下限是()。
企业国际化经营首要的核心竞争力是()。
“儿童心理发展等于遗传与环境的乘积”。这种观点是()
2007年4月2日,王某与丁某约定:王某将一栋房屋出售给丁某,房价20万元。丁某支付房屋价款后,王某交付了房屋,但没有办理产权移转登记。丁某接收房屋作了装修,于2007年5月20日出租给叶某,租期为2年。2007年5月29日,王某因病去世,全部遗产由其子小
胡锦涛同志指出,马克思主义政党执政成功的前提条件是()。
绝对感受性与绝对感觉阈限之间的关系是()。
YouareinterestedinClassicalMusic,soyoucanWatchTVat______.IfyouWanttoknowaboutprogrammesofnextWeek,Whichchann
最新回复
(
0
)