首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[a,b]上二阶连续可导,证明:存在ξ∈(a,b),使得∫abf(x)dx=(b-a)f(a+b/2)+(b-a)3/24f"(ξ).
设f(x)在区间[a,b]上二阶连续可导,证明:存在ξ∈(a,b),使得∫abf(x)dx=(b-a)f(a+b/2)+(b-a)3/24f"(ξ).
admin
2021-10-18
60
问题
设f(x)在区间[a,b]上二阶连续可导,证明:存在ξ∈(a,b),使得∫
a
b
f(x)dx=(b-a)f(a+b/2)+(b-a)
3
/24f"(ξ).
选项
答案
令F(x)=∫
a
x
f(t)dt,则F(x)在[a,b]上三阶连续可导,取x
0
=(a+b)/2,由泰勒公式得F(a)=F(x
0
)+F’(x
0
)(a-x
0
)+F"(x
0
)/2!(a-x
0
)
2
+F’"(ξ
1
)/3!(a-x
0
)
3
,ξ
1
∈(a,x
0
),F(b)=F(x
0
)+F’(x
0
)(b-x
0
)+F"(x
0
)/2!(b-x
0
)
2
+F’"(ξ
1
)/3!(b-x
0
)
3
,ξ
2
∈(x
0
,b),两式相减得F(b)-F(a)=F’(x
0
)(b-a)+(b-a)
3
/48[F’"(ξ
1
)+F’"(ξ
2
)],即∫
a
b
f(x)dx=(b-a)f[(a+b)/2]+(b-a)
3
/48[f"(ξ
1
)+f"(ξ
2
)],因为f"(x)在[a,b]上连续,所以存在ξ∈[ξ
1
,ξ
2
]∈(a,b),使得f"(ξ)=1/2[f"(ξ
1
)+f"(ξ
2
)],从而∫
a
b
f(x)dx=(b-a)f[(a+b)/2]+(b-a)
3
/24f"(ξ).
解析
转载请注明原文地址:https://kaotiyun.com/show/8ty4777K
0
考研数学二
相关试题推荐
设二次型f(x1,x2,x3)=XTAX,已知r(A)=2,并且A满足A2-2A=0.则下列各标准二次型(1)2y12+2y22.(2)2y12.(3)2y12+2y32.(4)2y22+2y32.中可用正交变换化为f的是().
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,且f’+(a)>0.证明:存在ξ∈(a,b),使得f’’(ξ)<0.
设有方程组AX=0与BX=0,其中A,B都是m×n阶矩阵,下列四个命题:(1)若AX=0的解都是BX=0的解,则r(A)≥r(B)(2)若r(A)≥r(B),则AX=0的解都是BX=0的解(3)若AX=0与BX=0同解,则r(A)=r(B)(4)若
设A是n阶矩阵,k为正整数,α是齐次方程组AkX=0的一个解,但是Ak-1α≠0.证明α,Aα,…,Ak-1α线性无关.
设f(x)在(一∞,+∞)上是导数连续的有界函数,|f(x)一f’(x)|≤1.证明:|f(x)|≤1.
设函数z=z(χ,y)由方程χ2+y2+z2=χyf(z2)所确定,其中f是可微函数,计算并化成最简形式.
设则=_______.
设f(x)在x=0处存在4阶导数,又设则必有()
设求f(x)的间断点并判断其类型.
已知f(x)的一个原函数为(1+sinx)lnx,求∫xf’(x)dx.
随机试题
根据《环境影响评价法》的有关规定,我国根据建设项目对环境的影响程度,对建设项目的环境影响评价实行【】
抗战胜利之际被日本宪兵秘密杀害的著名作家是()
阿司匹林与下列哪些药合用,可增强其作用:
患者男,38岁。因“风湿性心脏病,二尖瓣狭窄”需进行心脏换瓣手术,应用华法林抗凝药物后。如果国际标准化比值(INR)过大,容易发生
麻黄汤与桂枝汤证的主要区别是
对城乡规划实施进行(),是修改城乡规划的前置条件。
期货公司应当在每日交易闭市后为客户提供交易结算报告。( )
下列排序算法中不能保证每趟排序至少能将一个元素放到其最终的位置上的是()。
Artistsroutinelymockbusinesspeopleasmoney-obsessedbores.Orworse,Manybusinesspeople,fortheirpart,assumethatartist
BuyingaHomeToBuyortoRentAccordingtoCanadaMortgageandHousingCorporation(CMHC),37percentofCanadianren
最新回复
(
0
)