首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(Ⅰ):Ax=0和(Ⅱ):ATAx=0,必有
设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(Ⅰ):Ax=0和(Ⅱ):ATAx=0,必有
admin
2018-08-03
25
问题
设A为n阶实矩阵,A
T
是A的转置矩阵,则对于线性方程组(Ⅰ):Ax=0和(Ⅱ):A
T
Ax=0,必有
选项
A、(Ⅱ)的解是(Ⅰ)的解,(Ⅰ)的解也是(Ⅱ)的解.
B、(Ⅱ)的解是(Ⅰ)的解,但(Ⅰ)的解不是(Ⅱ)的解.
C、(Ⅰ)的解不是(Ⅱ)的解,(Ⅱ)的解也不是(Ⅰ)的解.
D、(Ⅰ)的解是(Ⅱ)的解,但(Ⅱ)的解不是(Ⅰ)的解.
答案
A
解析
若x满足Ax=0,两端左乘A
T
,得A
T
Ax=0,故Ax=0的解都是A
T
Ax=0的解;若x满足A
T
Ax=0,两端左乘x
T
,得(x
T
A
T
)(Ax)=0,即(Ax)
T
(Ax)=0,或‖Ax‖
2
=0,得Ax=0,所以A
T
Ax=0的解也都是Ax=0的解.因此(Ⅰ)与(Ⅱ)同解,只有选项A正确.
转载请注明原文地址:https://kaotiyun.com/show/9gg4777K
0
考研数学一
相关试题推荐
设随机变量X的密度函数为f(x)=e-|x|(一∞<x<+∞).(1)求E(X),D(X);(2)求Cov(X,|X|),问X,|X|是否不相关?(3)问X,|X|是否相互独立?
某商店经销某种商品,每周进货数量X与顾客对该种商品的需求量Y之间是相互独立的,且都服从[10,20]上的均匀分布.商店每出售一单位商品可获利1000元;若需求量超过了进货量,商店可从其他商店调剂供应,这时每单位商品获利500元,计算此商店经销该种商品每周所
设a是n维单位列向量,A=E一ααT.证明:r(A)<n.
设A为m×n阶矩阵,且r(A)=m<n,则().
设函数f(x)(x≥0)可微,且f(x)>0.将曲线y=f(x),x=1,x=a(a>1)及x轴所围成平面图形绕x轴旋转一周得旋转体体积为,求:(1)f(x);(2)f(x)的极值.
设A为n阶矩阵,若Ak—1α≠0,而Akα=0.证明:向量组α,Aα,…,Ak—1α线性无关.
证明S(x)=满足微分方程y(4)一y=0并求和函数S(x).
求幂级数的和函数.
设二维连续型随机变量(X,Y)在区域D上服从均匀分布,其中D={(x,y)}|x+y|≤1,|x一y|≤1},求X的边缘密度fX(x)与在X=0条件下,关于Y的条件密度fY|X(y|0).
随机试题
下列属于史论的文章是()
下列哪种药物可用于治疗上消化道出血
A.神经性休克B.感染性休克C.心源性休克D.低血容量性休克E.过敏性休克心肌梗死引起的休克
口腔天胞疮是一种与自身免疫相关的疾病,与之关系最密切的抗体是
根据《安全生产法》的规定,新建、改建、扩建工程项目的安全设施,必须与主体工程()。
设置会计科目应遵循的原则有( )。
嵩山少林寺是少林武术的发源地,禅宗祖庭。少林寺本是495年北魏孝文帝为安顿天竺僧人()而建。北魏孝昌三年(527年),佛祖第128代弟子天竺僧人菩提达摩大师来到中国,于此首传禅宗而名扬天下。
甲某以乙某亲笔写的借款6000元的借条为依据,向人民法院起诉要求乙某归还所借的6000元。在诉讼过程中,乙某提出该6000元系甲某赠与自己的钱,不应当付返还责任。对此主张应当由( )负举证责任。
近几年来,研究生入学考试持续升温。与之相应,各种各样的考研辅导班应运而生,尤其是英语类和政治类辅导班几乎是考研一族的必须之选。刚参加工作不久的小庄也打算参加研究生人学考试,所以,小庄一定得参加英语辅导班。以下哪项,最能加强上述论证?
设A是3阶矩阵,α1,α2,α3是3维列向量,α1≠0,满足Aα1=2α1,Aα2=α1+2α2,Aα3=α2+2α3.证明α1,α2,α3线性无关;
最新回复
(
0
)