首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
admin
2016-10-13
66
问题
设A为n阶矩阵,A
11
≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A
*
b=0.
选项
答案
设非齐次线性方程组AX=b有无穷多个解,则r(A)<n,从而|A|=0, 于是A
*
b=A
*
AX=|A|X=0. 反之,设A
*
b=0,因为b≠0,所以方程组A
*
X=0有非零解,从而r(A
*
)<n,又A
11
≠0,所以r(A
*
)=1,且r(A)=n一1. 因为r(A
*
)=1,所以方程组A
*
X=0的基础解系含有n一1个线性无关的解向量,而A
*
A=0,所以A的列向量组α
1
,α
2
,…,α
n
为方程组A
*
X=0的一组解向量. 由A
11
≠0,得α
2
,…,α
n
线性无关,所以α
2
,…,α
n
是方程组A
*
X=0的基础解系. 因为A
*
b=0,所以易可由α
2
,…,α
n
线性表示,也可由α
1
,α
2
,…,α
n
线性表示,故r(A)=[*]=n一1<n,即方程组AX=b有无穷多个解.
解析
转载请注明原文地址:https://kaotiyun.com/show/T6u4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 D
设A是m×n矩阵,B是n×m矩阵,则齐次线性方程组ABX=O().
设y=y(x)是函数方程ln(x2+y2)=x+y-1在(O,1)处所确定的隐函数,求dy及dy|(0,1).
设f(x)在(-∞,+∞)上可导,(1)若f(x)为奇函数,证明fˊ(x)为偶函数;(2)若f(x)为偶函数,证明fˊ(x)为奇函数;(3)若f(x)为周期函数,证明fˊ(x)为周期函数.
用列举法表示下列集合:(1)方程x2-7x+12=0的根的集合(2)抛物线y=x2与直线x—y=0交点的集合(3)集合{x||x-1|≤5的整数}
设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.试将x=x(y)所满足的微分方程(d2x)/(dy2)+(y+sinx)(dx/dy)=0变换为y=y(x)满足的微分方程;
已知曲线,其中函数f(t)具有连续导数,且f(0)=0,fˊ(t)>0,(0<t<π/2),若曲线L的切线与x轴的交点到切点的距离值恒为1,求函数f(t)的表达式,并求此曲线L与x轴与y轴无边界的区域的面积.
将函数f(x)=ln(1-x-2x2)展开成x的幂级数,并指出其收敛区间.
设f(x)有二阶连续导数,且f’(0)=0,则
设F(c,y)在(x0,y0)某邻域有连续的二阶偏导数,且F(x0,y0)=Fx’(x0,y0)=0,Fy’(x0,y0)>0,Fxx’’(x0,y0)
随机试题
简述调查人员的三项基本职责。
Themanagerclaimedthathiscompanyhadthe()rightofpublication.
川乌的剧毒成分是
A.抗感染B.剖胸探查C.同定胸壁D.穿刺排气减压E.迅速封闭胸壁伤口开放性气胸的紧急处理应
砌筑拱和拱顶时,必须()。
按照《公路工程国内招标文件范本》的相关规定,投标人的投标文件必须包括()
某二级耐火等级的办公室,建筑高度为24m,其周边布置有多个二级耐火等级的建筑,下列关于该办公建筑与周边建筑物防火间距的做法中,正确的有()。
下列各项中,关于明显微小错报的说法中,不恰当的是()。
2005年5月3日,受中共中央和国务院的委托,中共中央台湾工作办公室、国务院台湾事务办公室主任陈云林宣布,大陆同胞向台湾同胞赠送一对象征和平团结友爱的大熊猫;同时宣布,大陆有关方面将于近期开放大陆居民赴台湾(),扩大开放台湾()准入并对其中
Ifyouwanttoimproveyourchild’sresultsatschool,【T1】______thattheydoplentyofexercise.Scientistshavealreadyshownt
最新回复
(
0
)