首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(t)在[0,π]上连续,在(0,π)内可导,且∫0πf(χ)cosχdχ=∫0πf(χ)sinχdχ=0.证明:存在ξ∈(0,π),使得f′(ξ)=0.
设f(t)在[0,π]上连续,在(0,π)内可导,且∫0πf(χ)cosχdχ=∫0πf(χ)sinχdχ=0.证明:存在ξ∈(0,π),使得f′(ξ)=0.
admin
2019-08-23
51
问题
设f(t)在[0,π]上连续,在(0,π)内可导,且∫
0
π
f(χ)cosχdχ=∫
0
π
f(χ)sinχdχ=0.证明:存在ξ∈(0,π),使得f′(ξ)=0.
选项
答案
令F(χ)=∫
0
χ
(t)sintdt,因为F(0)=F(π)=0,所以存在χ
1
∈(0,π),使得 F′(χ
1
)=0,即f(χ
1
)sinχ
1
=0,又因为sinχ
1
≠0,所以f(χ
1
)=0. 设χ
1
是f(χ)在(0,π)内唯一的零点, 则当χ∈(0,π)且χ≠χ
1
时,有sin(χ-χ
1
)f(χ)恒正或恒负, 于是∫
0
π
sin(χ-χ
1
)f(χ)χ≠0. 而∫
0
π
sin(χ-χ
1
)f(χ)dχ=cosχ
1
∫
0
π
f(χ)sinχdχ-sinχ
1
∫
0
π
f(χ)cosχdχ=0,矛盾, 所以f(χ)在(0,π)内至少有两个零点.不妨设f(χ
1
)=f(χ
2
)=0,χ
1
,χ
2
∈(0,π)且χ
1
<χ
2
, 由罗尔中值定理,存在ξ∈(χ
1
,χ
2
)[*](0,π),使得f′(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/9oA4777K
0
考研数学二
相关试题推荐
求极限100
已知3阶矩阵A的第一行是(a,b,c),a,b,C不全为零,矩阵(k为常数),且AB=0,求线性方程组Ax=0的通解.
设在0<x≤1时函数f(x)=xsinx其他的x满足关系式f(x)+k=2f(x+1),试求常数k使极限存在.
设f(x)在[0,1]连续,在(0,1)内f(x)>0且xf’(x)=f(x)+ax2,又由曲线y=f(x)与直线x=1,y=0围成平面图形的面积为2,求函数y=f(x),问a为何值,此图形绕x轴旋转而成的旋转体体积最小?
设A,B是n阶方阵,B及E+AB可逆,证明:E+BA也可逆,并求(E+BA)一1.
证明=(n+1)an.
椭球面S1是椭圆绕x轴旋转一周而成,圆锥面S2是过点(4,0)且与椭圆相切的直线绕x轴旋转一周而成。[img][/img]求S1及S2的方程;
设区域D={(x,y)|x2+y2≤4,x≥0,y≥0},f(x)为D上的正值连续函数,a,b为常数,则=()
设函数f(u,v)具有二阶连续偏导数z=f(x,xy),则=______。
随机试题
简述劳动合同当事人的先合同义务。
支气管哮喘持续状态时祛痰方法是
女,54岁,绝经2年,阴道流血1个月,外阴、阴道萎缩不明显,宫颈光滑,子宫正常大,右侧触及8cm×6cm×4cm大小韧性椭圆形包块,稍活动,左附件正常,阴道细胞涂片提示雌激素水平高度影响,分段诊断性刮宫,子宫内膜活检病理为子宫内膜腺囊性增生,颈管内膜未见异
防风在痛泻要方中的作用是
患者,女,28岁。已妊娠2月,因关节痛就诊,医师处方时应禁用的中是
药学职业道德范畴中的共同理想是指()。
按《建筑安装工程费用项目组成》(建标[2003]206号)规定,措施费包括()。
某泵站土建标共有甲、乙、丙、丁四家单位购买了招标文件,其中甲、乙、丙参加了由招标人组织的现场踏勘和标前会,现场踏勘中甲单位提出了招标文件中的疑问,招标人现场进行了答复,根据有关规定,招标人应将解答以书面方式通知()。
(2012年辨析55)请对“无行为即无犯罪”这一说法进行辨析。
•Readthearticlebelowabouttelephoneskills.•Foreachquestion31-40writeonewordinCAPITALLE’I’I’ERSonyourAnswerS
最新回复
(
0
)