首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(t)在[0,π]上连续,在(0,π)内可导,且∫0πf(χ)cosχdχ=∫0πf(χ)sinχdχ=0.证明:存在ξ∈(0,π),使得f′(ξ)=0.
设f(t)在[0,π]上连续,在(0,π)内可导,且∫0πf(χ)cosχdχ=∫0πf(χ)sinχdχ=0.证明:存在ξ∈(0,π),使得f′(ξ)=0.
admin
2019-08-23
78
问题
设f(t)在[0,π]上连续,在(0,π)内可导,且∫
0
π
f(χ)cosχdχ=∫
0
π
f(χ)sinχdχ=0.证明:存在ξ∈(0,π),使得f′(ξ)=0.
选项
答案
令F(χ)=∫
0
χ
(t)sintdt,因为F(0)=F(π)=0,所以存在χ
1
∈(0,π),使得 F′(χ
1
)=0,即f(χ
1
)sinχ
1
=0,又因为sinχ
1
≠0,所以f(χ
1
)=0. 设χ
1
是f(χ)在(0,π)内唯一的零点, 则当χ∈(0,π)且χ≠χ
1
时,有sin(χ-χ
1
)f(χ)恒正或恒负, 于是∫
0
π
sin(χ-χ
1
)f(χ)χ≠0. 而∫
0
π
sin(χ-χ
1
)f(χ)dχ=cosχ
1
∫
0
π
f(χ)sinχdχ-sinχ
1
∫
0
π
f(χ)cosχdχ=0,矛盾, 所以f(χ)在(0,π)内至少有两个零点.不妨设f(χ
1
)=f(χ
2
)=0,χ
1
,χ
2
∈(0,π)且χ
1
<χ
2
, 由罗尔中值定理,存在ξ∈(χ
1
,χ
2
)[*](0,π),使得f′(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/9oA4777K
0
考研数学二
相关试题推荐
设f(χ)在[a,b]上有定义,M>0且对任意的χ,y∈[a,b],有|f(χ)-f(y)|≤M|χ-y|k.(1)证明:当k>0时,f(χ)在[a,b]上连续;(2)证明:当k>1时,f(χ)≡常数.
证明=(n+1)an.
设u=f(x,y,xyz),函数z=z(x,y)由exyz=∫xyzh(xy+z-t)dt确定,其中f连续可偏导,h连续,求
椭球面S1是椭圆绕x轴旋转一周而成,圆锥面S2是过点(4,0)且与椭圆相切的直线绕x轴旋转一周而成。[img][/img]求S1及S2的方程;
交换积分次序∫1edx∫0lnxf(x,y)dy为()
设函数u=f(x,y)具有二阶连续偏导数,且满足等式确定a,b的值,使等式通过变换ξ=x+ay,η=x+by可化简为[img][/img]
设z=z(x,y)是由方程x2+y2一z=φ(x+y+z)所确定的函数,其中φ具有二阶导数且φ’≠一1。记u(x,y)=求[img][/img]
设z=z(x,y)是由方程x2+y2一z=φ(x+y+z)所确定的函数,其中φ具有二阶导数且φ’≠一1。求dz;
设有平面闭区域,D={(x,y)|一a≤x≤a,x≤y≤a},D1={(x,y)|0≤x≤a,x≤y≤a},则(xy+cosxsiny)dxdy=()
设其中f(x)在x=0处二阶可导,且f(0)=f’(0)=1。a,b为何值时,g(x)在x=0处可导。
随机试题
A、Rightaway.B、Earlynextmonth.C、Intwomonths.D、Inacoupleofdays.C从选项预测本题问时间。男士跟女士说下月初她才可以开始上岗,这是否会对她有影响,女士回答说没有影响,故选C。
A.5~10mmHgB.20~40mmHgC.30~40mmHgD.<90/60mmHgE.>140mmHg
A.厚约45nm,紧邻上皮基底细胞,电子密度小的板状结构称B.厚约50nm,为颗粒状或细丝状物质,电子密度较高的板状结构称C.紧邻固有层,电子密度较低,由相对纤细的半环形纤维构成的板状结构称D.透明板和密板均来自上皮细胞合称E.在上皮和固有层之间,
子宫内膜癌发病可能的相关因素是
记录患者资料时,错误的是
在无单桩载荷试验资料时,复合地基的桩可按下式估算:,其中qp在下列()情况下用桩端端承力特征值。
价值工程实施的创新阶段,方案创造的方法很多,包括()。
世界贸易组织的性质主要体现在()。
在一般情况下,即将到期的公司债券,应在资产负债表中()。
在文件in33.dat中有200个正整数,且每个正整数均在1000至9999之间。函数readDat()的功能是读取这200个数并存放到数组aa中。请编制函数jsSort(),该函数的功能是:要求按照每个数的后3位的大小进行升序排列,将排序后的前10个数存
最新回复
(
0
)