首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明 =(n+1)an.
证明 =(n+1)an.
admin
2018-11-11
34
问题
证明
=(n+1)a
n
.
选项
答案
本题以证明题的形式出现,容易诱导想到用数学归纳法.记此行列式为D
n
,对第1行展开,得递推公式 D
n
=2aD
n-1
-a
2
D
n-2
. 用数列技巧计算. D
n
=2aD
n-1
-a
2
D
n-2
.改写为D
n
-aD
n-1
=a(D
n-1
-aD
n-2
),记H
n
=D
n
-aD
n-1
(n≥2),则n≥3时H
n
=aH
n-1
,即{H
n
}是公比为a的等比数列.而H
2
=D
2
-aD
1
=3a
2
-2a
2
=a
2
,得到H
n
=a
n
,于是得到一个新的递推公式 D
n
=aD
n-1
+a
n
, 两边除以a
n
,得D
n
/a
n
=D
n-1
/a
n-1
+1.于是{D
n
/a
n
}是公差为1的等差数列.D
1
/a=2,则 D
n
/a
n
=n+1,D
n
=(n+1)a
n
.
解析
转载请注明原文地址:https://kaotiyun.com/show/hCj4777K
0
考研数学二
相关试题推荐
计算在第一卦限的部分.
求一组向量α1,α2,使之与α3=(1,1,1)T成为R3的正交基;并把α1,α2,α3化成R3的一个标准正交基.
已知随机变量X和Y相互独立,且都服从正态分布N(0,σ2),求常数R,使得概率P{≤R}=0.5.
求幂级数的收敛域和和函数.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.求矩阵A的特征值;
设A=E一ξξT,其中E是n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别为α,β的转置.证明:r(A)≤2.
求极限.
(2010年)(Ⅰ)比较∫01|lnt|[ln(1+t)]ndt与∫01tn|lnt|dt(n=1,2,…)的大小,说明理由;(Ⅱ)记un=∫01|lnt|[ln(1+t)]ndt(n=1,2,…),求极限un.
设A是n阶矩阵,λ是A的特征值,其对应的特征向量为X,证明:λ2是A2的特征值,X为特征向量.若A2有特征值λ,其对应的特征向量为X,X是否一定为A的特征向量?说明理由.
随机试题
将决策分为质的决策和量的决策的标准是
表面活性剂的应用错误的是
背景资料:某水利水电施工承包商与业主签订了一份堤防工程施工合同,合同约定工期为68天,承包商工期每提前1天获奖励2000元,每拖后1天支付违约金3000元。承包商提交的施工网络进度计划如下图所示,该计划得到业主代表的认可。在实际施工过
下列各项中,表述不正确的是()。
下列关于风险的定义.哪一个更加符合现代金融风险管理的理念?()
甲公司系增值税一般纳税人,适用的增值税税率为17%,所得税税率为25%,预计未来期间能够取得足够的应纳税所得额用以抵减可抵扣暂时性差异。相关资料如下:资料一:2012年12月10日,甲公司以银行存款购入一台需自行安装的生产设备,取得的增值税专用发票
描述样本分散程度的统计量有()。
根据表格可知,我国利用外资金额最多的是( )我国利用外资金额在1995年至2001年呈现出( )
计算
Whileattendingahighereducationsystemoffersmanypositives,italsoofferscertainnegatives.Onenegativeisthefacthigh
最新回复
(
0
)