首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶实对称矩阵,α1=(a,-a,1)T是方程组AX=0的解,α2=(a,1,1-a)T是方程组(A+E)X=0的解,则a=_______.
设A为三阶实对称矩阵,α1=(a,-a,1)T是方程组AX=0的解,α2=(a,1,1-a)T是方程组(A+E)X=0的解,则a=_______.
admin
2019-07-17
83
问题
设A为三阶实对称矩阵,α
1
=(a,-a,1)
T
是方程组AX=0的解,α
2
=(a,1,1-a)
T
是方程组(A+E)X=0的解,则a=_______.
选项
答案
1
解析
因为A为实对称矩阵,所以不同特征值对应的特征向量正交,
因为AX=0及(A+E)X=0有非零解,所以λ
1
=0,λ
2
=-1为矩阵A的特征值,α
1
=(a,-a,1)
T
,a
2
=(a,1,1-a)
T
是它们对应的特征向量,所以有α
1
T
α
2
=a
2
-a+1-a=0,解得a=1.
转载请注明原文地址:https://kaotiyun.com/show/A2N4777K
0
考研数学二
相关试题推荐
设连续函数f(x)满足∫0xtf(x—t)dt=1—cosx,求
设f’(sin2x)=cos2x+tan2x,则f(x)=______(0<x<1).
设A是三阶实对称矩阵,且A2+2A=O,r(A)=2.(1)求A的全部特征值;(2)当k为何值时,A+kE为正定矩阵?
设C,C1,C2,C3是任意常数,则以下函数可以看作某个二阶微分方程的通解的是
设A,B均为n阶实对称矩阵,则A与B合同的充要条件是
计算下列不定积分:
设区域D={(x,y)|x2+y2≤4,x≥0,y≥0}f(x)为D上的正值连续函数,a,b为常数,则=()
设二元函数f(x,y)=|x-y|φ(x,y),其中φ(x,y)在点(0,0)处的某邻域内连续.证明:函数f(x,y)在点(0,0)处可微的充分必要条件是φ(0,0)=0.
计算n阶行列式,对角线上烦人元素都为0,其他元素都为1.n=_______.
设f(x)为非负连续函数,且满足f(x)∫0xf(x-t)dt=sin2x;求f(x)在上的平均值.
随机试题
合同法定解除的情形有哪些?
血清与血浆的区别是
女性,48岁。突然胸闷痛,心悸,心电图示V1~3有深而宽的Q波,ST段抬高,伴有室性期前收缩,二联律形成,抢救中突然抽搐。最可能的原因是
下述属于慢阻肺预防方法的是()。
××局关于要求解决消除安全隐患专项经费的请示××人民政府:根据各级政府有关严防安全事故发生的紧急通知要求,我局领导高度重视,组织专人进行了一次安全大检查,发现我县还存在滑坡、危岩、危房、危旧线路、有毒有害物质储存不合理、消防设施严重不足等安全隐
下列案件属于行政诉讼受案范围的是()。
关于毛泽东思想,下列说法中正确的有()
Theideathatsomegroupsofpeoplemaybemoreintelligentthanothersisoneofthosehypothesesthatdarenotspeakitsname.
FromMondayuntilFriday【36】peoplearebusyworkingorstudying,butintheeveningsand【37】weekendstheyarefreetoenjoythem
Whendidthefilmbegin?
最新回复
(
0
)