首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
假设随机变量X的密度函数f(χ)=ce-λ|χ|(λ>0,-∞<χ<+∞),Y=|X|. (Ⅰ)求常数c及EX,DX: (Ⅱ)问X与Y是否相关?为什么? (Ⅲ)问X与Y是否独寺?为什么?
假设随机变量X的密度函数f(χ)=ce-λ|χ|(λ>0,-∞<χ<+∞),Y=|X|. (Ⅰ)求常数c及EX,DX: (Ⅱ)问X与Y是否相关?为什么? (Ⅲ)问X与Y是否独寺?为什么?
admin
2018-11-23
54
问题
假设随机变量X的密度函数f(χ)=ce
-λ|χ|
(λ>0,-∞<χ<+∞),Y=|X|.
(Ⅰ)求常数c及EX,DX:
(Ⅱ)问X与Y是否相关?为什么?
(Ⅲ)问X与Y是否独寺?为什么?
选项
答案
(Ⅰ)由于∫
-∞
+∞
f(χ)dχ=1,所以c∫
-∞
+∞
e
-λ|χ|
dχ=2c∫
0
+∞
e
-λχ
dχ=[*]=1,,故c=[*]. 又f(χ)是偶函数,且反常积分∫
-∞
+∞
χf(χ)dχ收敛,所以 EX=∫
-∞
+∞
χf(χ)dχ=0, DX=EX
2
=∫
-∞
+∞
χf(χ)dχ=[*] (Ⅱ)由于f(χ)是偶函数,故EXY=EX|X|=∫
-∞
+∞
χ|χ|f(χ)dχ=0,而EX=0,所以EXY=EX.EY,故X与Y不相关. (Ⅲ)下面我们应用事件关系证明X与Y=|X|不独立.因为 {|X|≤1}[*]{X≤1}, 又P{|X|≤1}=∫
-1
1
f(χ)dχ≠0, P{X≤1}=∫
-∞
1
f(χ)dχ≠1, 所以{|X|≤1}与{X≤1}不独立(包含关系不独立),故X与Y=|X|不独立.
解析
转载请注明原文地址:https://kaotiyun.com/show/A6M4777K
0
考研数学一
相关试题推荐
三元一次方程组所代表的三个平面的位置关系为()
细菌的增长率与总数成正比,如果培养的细菌总数在24小时内由100增长到400,求前12小时后的细菌总数.
设某次考试的考生成绩服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平0.05下,是否可以认为这次考试全体考生的平均成绩为70分?并给出检验过程。[附表]:t分布表,P{t(n)≤tp(n)}=p
已知矩阵A与B相似,其中求a,b的值及矩阵P,使P-1AP=B.
证明f(x)=sinx-x在(-∞,+∞)上严格单调减少.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:(1)存在ξ∈(a,b),使得f’(ξ)=2ξf(ξ).(2)存在η∈(a,b),使得ηf’(η)+f(η)=0.
设f(u,v)为二元可微函数,z=f(xy,yx),则=_________.
已知α1,α2均为2维向量,矩阵A=[2α1+α2,α1一α2],β=[α1,α2],若行列式|A|=6,则|B|=____
(97年)从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是.设X为途中遇到红灯的次数,求随机变量X的分布律、分布函数和数学期望.
设随机事件A与B互不相容,且0<P(A)<1,0<P(B)<1,令().X与Y的相关系数为ρ,则().
随机试题
需要进行腹部压迫的造影检查是
针灸治疗遣尿的主穴是()
肩峰前下方,当肩峰与肱骨大结节之间的腧穴是
不具有清肝明目功效的药物是
条痕樱红色或红棕色,气微,味淡的是条痕白色,无臭,味苦,咸的是
患儿,男,5岁,7月20日因突然高热、惊厥1次入院。体温39.5℃,面色苍白,四肢厥冷,意识模糊。为明确诊断,医生让护士为患儿留取大便。护士正确的做法是
某公司向银行借入12000元,借款期为3年,每年的还本付息额为4600元,已知(P/A,7%,3)=2.6243,(P/A,8%,3)=2.5771,则借款利率为()。
某社区卫生服务站设立已有五年,为解决社区居民的看病问题提供了诸多便利。以下社区居民属于该社区卫生服务站的重点服务对象的是()
要求督导者在被督导者的招募与选择、被督导者的引导与安置、工作计划与分配、工作监督、回顾与评估、工作授权与协调等方面担负指导责任是社会工作督导功能中的()
在教学理论指导下,为实现特定教学目标而设计的较为稳定的教学范型是()
最新回复
(
0
)