首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
假设随机变量X的密度函数f(χ)=ce-λ|χ|(λ>0,-∞<χ<+∞),Y=|X|. (Ⅰ)求常数c及EX,DX: (Ⅱ)问X与Y是否相关?为什么? (Ⅲ)问X与Y是否独寺?为什么?
假设随机变量X的密度函数f(χ)=ce-λ|χ|(λ>0,-∞<χ<+∞),Y=|X|. (Ⅰ)求常数c及EX,DX: (Ⅱ)问X与Y是否相关?为什么? (Ⅲ)问X与Y是否独寺?为什么?
admin
2018-11-23
47
问题
假设随机变量X的密度函数f(χ)=ce
-λ|χ|
(λ>0,-∞<χ<+∞),Y=|X|.
(Ⅰ)求常数c及EX,DX:
(Ⅱ)问X与Y是否相关?为什么?
(Ⅲ)问X与Y是否独寺?为什么?
选项
答案
(Ⅰ)由于∫
-∞
+∞
f(χ)dχ=1,所以c∫
-∞
+∞
e
-λ|χ|
dχ=2c∫
0
+∞
e
-λχ
dχ=[*]=1,,故c=[*]. 又f(χ)是偶函数,且反常积分∫
-∞
+∞
χf(χ)dχ收敛,所以 EX=∫
-∞
+∞
χf(χ)dχ=0, DX=EX
2
=∫
-∞
+∞
χf(χ)dχ=[*] (Ⅱ)由于f(χ)是偶函数,故EXY=EX|X|=∫
-∞
+∞
χ|χ|f(χ)dχ=0,而EX=0,所以EXY=EX.EY,故X与Y不相关. (Ⅲ)下面我们应用事件关系证明X与Y=|X|不独立.因为 {|X|≤1}[*]{X≤1}, 又P{|X|≤1}=∫
-1
1
f(χ)dχ≠0, P{X≤1}=∫
-∞
1
f(χ)dχ≠1, 所以{|X|≤1}与{X≤1}不独立(包含关系不独立),故X与Y=|X|不独立.
解析
转载请注明原文地址:https://kaotiyun.com/show/A6M4777K
0
考研数学一
相关试题推荐
求下列函数的导数:
已知A=,且A~B,求a,b,c的值.
设A为n阶矩阵,证明:r(A*)=,其中n≥2.
设A,B都是三阶矩阵,A相似于B,且|E—A|=|E一2A|=|E一3A|=0,则|B-1+2E|=___________.
设函数μ(x,y,z)=1+x2/6+y2/12+z2/18,单位向量则=___________.
从均值为μ,方差为σ2>0的总体中分别抽取容量为n1和n2的两个独立样本,样本均值分别记为X1和X2.试证:对任意满足a+b=1的常数a、b,都是μ的无偏估计.并确定a、b,使D(T)达到最小.
(97年)从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是.设X为途中遇到红灯的次数,求随机变量X的分布律、分布函数和数学期望.
(88年)设4×4矩阵A=(αγ2γ3γ4),B=(βγ2γ3γ4),其中α,β,γ2,γ3,γ4均为4维列向量,且已知行列式|A|=4,|B|=1,则行列式|A+B|=______.
假设批量生产的某种配件的内径X服从正态分布N(μ,σ2),今随机抽取16个配件,测得平均内径=3.05毫米,样本标准差s=0.4毫米,试求μ和σ2的90%置信区间.
随机试题
时间和空间是( )
革兰阴性细菌菌败血症有何临床特点?
下列不符合葡萄胎的描述是
X线强度分布的叙述,错误的是
下述各肌中不附于肩胛骨的是()。
《建设工程质量管理条例》规定,下列()不属于必须实行监理的工程。
申请建立保税仓库,除了要求具有专门储存、堆放进口货物的安全设施,建立健全的仓库管理制度和详细的仓库账册、配备经海关培训的专职管理人员外,保税仓库的经理人还应具备向海关缴纳税款的能力。()
下列关于磨损的说法中,正确的是()。
投资基金的收益率是通过基金净资产的价值变化来衡量的。( )
一般来说,按照信息服务工作基础的不同,可以把信息服务划分为()等几大类型。
最新回复
(
0
)