首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X和Y都服从正态分布,且它们不相关,则( )
设随机变量X和Y都服从正态分布,且它们不相关,则( )
admin
2019-05-12
52
问题
设随机变量X和Y都服从正态分布,且它们不相关,则( )
选项
A、X与Y一定独立.
B、(X,Y)服从二维正态分布.
C、X与Y未必独立.
D、X+Y服从一维正态分布.
答案
C
解析
本题考查正态分布的性质以及二维正态分布与一维正态分布之间的关系.只有(X,Y)服从二维正态分布时,不相关与独立才是等价的.即使X与Y都服从正态分布,甚至X与Y不相关也并不能推出(X,Y)服从二维正态分布.例如(X,Y)的联合密度为
不难验证X与y都服从正态分布N(0,1),且相关系数ρ
XY
=0,而(X,Y)不服从二维正态分布,X与Y也不相互独立.
本题仅仅已知X与Y服从正态分布,因此,由它们不相关推不出X与Y一定独立,排除A;
若X与Y都服从正态分布且相互独立,则(X,Y)服从二维正态分布,但题设并不知道X,Y是否独立,可排除B;
同样要求X与Y相互独立时,才能推出X+Y服从一维正态分布,可排除D.故正确选项为C.
转载请注明原文地址:https://kaotiyun.com/show/AA04777K
0
考研数学一
相关试题推荐
设α1,α2,…,αn为n个n维线性无关的向量,A是n阶矩阵.证明:Aα1,Aα2,…,Aαn线性无关的充分必要条件是A可逆.
设A为n阶矩阵,证明:r(A*)=,其中n≥2.
设函数f0(x)在(-∞,+∞)内连续,fn(x)=∫0xfn-1(t)dt(n=1,2,…).证明:fn(x)=1/(n-1)!∫0xf0(t)(x-t)n-1dt(n=1,2,…);
设f(x)在(-a,a)(a>0)内连续,且f’(0)=2.证明:对0<x<a,存在0<θ<1,使得∫0xf(t)dt+∫0-xf(t)dt=x[f(θx)-f(-θx)];
设二维随机变量(X,Y)的联合密度函数为f(x,y)=求随机变量Z=X+2Y的分布函数和密度函数.
某f家生产的一种产品同时在两个市场上销售,售价分别为p1,p2,销售量分别为q1,q2,需求函数分别为q1=24-0.2p1,q2=10-0.05p2,总成本函数为C=35+40(q1+q2),问f家如何确定两个市场的销售价格,能使其获得总利润最大?最大利
设u=u(x,y,z)连续可偏导,令若x=0,证明:u仅为θ与φ的函数.
设X1,X2,…,Xn是来自总体X的简单随机样本,已知E(Xk)=ak(k=1,2,3,4).证明:当n充分大时,随机变量Zn=1/nXi2近似服从正态分布,并指出其分布参数.
设则(A*)-1=___________.
设则其以2π为周期的傅里叶级数在x=±π处收敛于______.
随机试题
甲股份有限公司(以下简称“甲公司”)是一家上市公司,与股权投资有关的资料如下:(1)甲公司与乙公司均为增值税一般纳税人,适用的增值税税率为17%,适用的所得税税率均为25%,所得税均采用资产负债表债务法核算。2×16年1月1日,甲公司以定向增发普
政府及其所属部门滥用行政权力,强制经营者从事法律所禁止的排除或限制市场竞争的行为称为【】
患者,男,56岁。1周前右上腹部绞痛,伴恶心、呕吐,体温37.4℃,予以抗炎治疗后缓解。3天来,出现巩膜黄染,食欲缺乏,收入院。查体:腹软,无压痛,Murphy征(﹣),肝区轻叩痛。B超:胆囊10cm×5cm大小,其内可见多个点状回声,胆总管上段直径1.2
上消化道出血
肉眼血尿反复发作,最常见的肾小球疾病是
在项目目标动态控制的纠偏措施中,调整管理职能分工属于()。
下列行为没有违法的是()。
下列筹资方式中,没有筹资费用,但是财务风险较小,资本成本较高的筹资方式是()。
某案的两名凶手在以下五人中,经过公安部门的侦查后得知:①只有甲是凶手,乙才是凶手②只要丁不是凶手,丙就不是凶手③或乙是凶手,或丙是凶手④丁没有戊为帮凶,就不会作案⑤戊没有作案时间这件案件中的凶手是:
我国现场检查的原则是()。
最新回复
(
0
)