首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2005年] 设D={(x,y)|x2+y2≤,x≥0,y≥0},[1+x2+y2]表示不超过1+x2+y2的最大整数,计算二重积分xy[1+x2+y2]dxdy.[img][/img]
[2005年] 设D={(x,y)|x2+y2≤,x≥0,y≥0},[1+x2+y2]表示不超过1+x2+y2的最大整数,计算二重积分xy[1+x2+y2]dxdy.[img][/img]
admin
2019-04-08
37
问题
[2005年] 设D={(x,y)|x
2
+y
2
≤
,x≥0,y≥0},[1+x
2
+y
2
]表示不超过1+x
2
+y
2
的最大整数,计算二重积分
xy[1+x
2
+y
2
]dxdy.[img][/img]
选项
答案
因被积函数需分区域表示,其二重积分需分块计算.在D上xy[1+x
2
+y
2
]=[*] 将积分区域分成两块D=D
1
∪D
2
,其中 D
1
={(x,y)|x
2
+y
2
<1,x≥0,y≥0},D
2
={(x,y)|1≤x
2
+y
2
≤[*],x≥0,y≥0}, 则 [*] 考虑到D
1
为部分圆域,D
2
为环形域,作极坐标变换,有 D
1
={(r,θ)|0≤θ≤π/2,0≤r≤1},D
2
={(r,θ)|0≤θ≤π/2,1≤r≤2
1/4
}. 故[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/AD04777K
0
考研数学一
相关试题推荐
已知平面上三条不同直线的方程分别为l1:ax+2by+3c=0,l2:bx+2cy+3a=0,l3:cx+2ay+3b=0。试证这三条直线交于一点的充分必要条件为a+b+c=0。
已知矩阵(Ⅰ)求A99;(Ⅱ)设三阶矩阵B=(α1,α2,α3)满足B2=BA。记B100=(β1,β2,β3),将β1,β2,β3分别表示为α1,α2,α3的线性组合。
已知一批零件的长度X(单位:cm)服从正态分布N(μ,1),从中随机地抽取16个零件,得到长度的平均值为40(cm),则μ的置信度为0.95的置信区间是________。(注:标准正态分布函数值Ф(1.96)=0.975,Ф(1.645)=0.95。)
试分析下列各个结论是函数z=f(x,y)在点P0(x0,y0)处可微的充分条件还是必要条件.
在[0,+∞)上给定曲线y=y(x)>0,y(0)=2,y(x)有连续导数.已知x>0,[0,x]上一段绕x轴旋转所得侧面积等于该段旋转体的体积,求曲线y=y(x)的方程.
已知齐次线性方程组同解,求a,b,c的值.
已知以2π为周期的周期函数f(x)在(-∞,+∞)上有二阶导数,且f(0)=0.设F(x)=(sinx-1)2f(x),证明=x0∈(2π,)使得F″(x0)=0.
设D={(x,y)|0<x<1,0<y<1},且变量(X,Y)在区域D上服从均匀分布,令Z=判断X,Z是否独立.
(1998年)设l是椭圆其周长记为a,则
[2002年]设f(x)在(一∞,+∞)上有一阶连续导数,L是上半平面(y>0)内的有向分段光滑曲线,其起点为(a,b),终点为(c,d).记当ab=cd时,求I的值.
随机试题
东方公司为增值税一般纳税人,适用增值税税率17%。该公司生产经营A产品,A产品的单位售价为500元(不含税),单位成本为350元。2009年3月份该公司发生的交易或事项有:(1)向本市某商场销售A产品60台,价税款收妥存入银行。(2)按合同规定销售给外
A.氨苄西林 B.青霉素类 C.乙胺丁醇 D.利福平 E.异烟肼对细菌及结核杆菌感染都有效的药物是
影响土地位置优劣的因素主要有()。
【真题(初、中级)】下列关于审计质量管理的表述中,正确的有()。
A注册会计师负责审计甲公司2017年度财务报表。A注册会计师发现甲公司2017年12月31日应收账款由1000个项目组成,应收账款账面价值为300万元,假定注册会计师确定的实际执行的重要性水平是5万元,评估的重大错报风险为“高”水平,其他实质性程序未能发现
一个使用CSMA/CA的网络上,计算机A的帧际间隔是2时槽,计算机B的帧际间隔是6时槽,如果计算机C使用()帧际间隔可以获得最高优先级。
某品牌运动鞋年末降价促销,原来可买2双鞋的钱,现在可买5双.则这一品牌鞋的价格下降的百分比是多少?
无类别域问路由(CIDR)技术有效地解决了路由缩放问题。使用CIDR技术把4个网络C1:192.24.0.0/21C2:192.24.16.0/20C3:192.24.8.0/22C4:192.24.34.0/23汇
A、可能是小王B、不知道是谁C、只有小李D、有很多人C
Dohertygotthesecretrecipesforjamfromhis
最新回复
(
0
)