设f(x)在[0,1]上二阶可导,且f(0)=f’(0)=f(1)=f’(1)=0.证明:方程f"(x)=f(x)=0在(0,1)内有根.

admin2016-10-24  39

问题 设f(x)在[0,1]上二阶可导,且f(0)=f’(0)=f(1)=f’(1)=0.证明:方程f"(x)=f(x)=0在(0,1)内有根.

选项

答案令φ(x)=e一x[f(x)+f’(x)].因为φ(0)=φ(1)=0,所以由罗尔定理,存在c∈(0,1)使得φ’(f)=0,而φ’(x)=e一x[f(x)一f(x)]且e一x≠0,所以方程f"(c)一f(c)=0在(0,1)内有根.

解析
转载请注明原文地址:https://kaotiyun.com/show/AIH4777K
0

相关试题推荐
最新回复(0)