首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αn是一组n维向量,已知n维单位坐标向量e1,e2,…,en能由它们线性表示,证明α1,α2,…,αn线性无关.
设α1,α2,…,αn是一组n维向量,已知n维单位坐标向量e1,e2,…,en能由它们线性表示,证明α1,α2,…,αn线性无关.
admin
2016-05-31
33
问题
设α
1
,α
2
,…,α
n
是一组n维向量,已知n维单位坐标向量e
1
,e
2
,…,e
n
能由它们线性表示,证明α
1
,α
2
,…,α
n
线性无关.
选项
答案
n维单位向量e
1
,e
2
,…,e
n
线性无关,有r(e
1
,e
2
,…,e
n
)=n. 又因为n维单位坐标向量e
1
,e
2
,…,e
n
能由a
1
,a
2
,…,a
n
线性表示,则可得 n=r(e
1
,e
2
,…,e
n
)≤r(a
1
,a
2
,…,a
n
). 又a
1
,a
2
,…,a
n
是一组n维向量,因此r(a
1
,a
2
,…,a
n
)≤n. 综上所述r(a
1
,a
2
,…,a
n
)=n.故a
1
,a
2
,…,a
n
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/ALT4777K
0
考研数学三
相关试题推荐
随着我国经济社会的发展,国家免除了农民缴纳土地税的义务;随着国民收入的提高,国家逐步调整个人所得税的起征标准,收入在起征点以下人群缴纳所得税的义务也随之被免除;随着信息社会和汽车时代的到来,人们维护信息安全和遵守交通规则的义务则相应增多。这说明(
用中华传统美德滋养社会主义道德建设,为社会主义道德建设提供丰厚的道德资源,赋予社会主义道德和共产主义道德以鲜明的民族特色。必须坚持的标准是()。
毛泽东指出,“在社会主义社会中,基本的矛盾仍然是生产关系和生产力之间的矛盾,上层建筑和经济基础之间的矛盾”这一基本矛盾运动的特点是()。
已知二次型f(x1,x2,x3)=x12+5x22+x32+2x1x2+2ax2x3为正定二次型,则a的取值范围是——.
设β,α1,α2线性相关,β,α2,α3线性无关,则().
证明:抛物面z=x2+y2+1上任一点处的切平面与曲面z=x2+y2所围成的立体的体积为一定值.
设n元二次型f(x1,x2,…,xn)=XTAX,其中AT=A.如果该二次型通过可逆线性变换X=CY可化为f(y1,y2,…,yn)=YTBY,则以下结论不正确的是().
设二次型f(x1,x2,x3)=xTAx的秩为1,A的各行元素之和为3,则f在正交变换x=Qy下的标准形为_________.
已知n阶矩阵求|A|中元素的代数余子式之和,第i行元素的代数余子式之和,i=1,2,…,n及主对角元的代数余子式之和
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n一中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)=记X一(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)的
随机试题
Ithinkthesetraditionalcustomsshouldbe______.
符合新药报批人体生物利用度实验要求的叙述为
下列哪些案件依法不应公开审理?()
[背景资料]某堤防除险加固工程依据《堤防和疏浚工程施工合同范本》签订了施工合同,施工内容包括防洪闸及堤防加固。其中经承包人申请、监理单位批准,发包人同意将新闸门的制作及安装由分包单位承担。合同约定:(1)当实际完成工程量超过工程量清单估算工程量时,其超
建设工程项目决策阶段策划的主要任务是定义( )。
出口货物使用木质包装的,自2000年1月1日起,海关凭出入境检验检疫机关签发的《出境货物通关单》验放。( )
期货经纪公司高管人员任职资格审核程序包括()。
“积极配合相关部门做好法律政策宣传教育”,符合以下()的要求。
ItraveltotheBinhaiNewAreabylightrailwayeveryday,______domanybusinessmenwholiveindowntownTianjin.
操作性条件反射理论由行为主义心理学家________创立。
最新回复
(
0
)