首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A=,求A的特征值、特征向量,并判断A能否对角化,说明理由.
已知A=,求A的特征值、特征向量,并判断A能否对角化,说明理由.
admin
2016-10-26
45
问题
已知A=
,求A的特征值、特征向量,并判断A能否对角化,说明理由.
选项
答案
由特征多项式 [*] 得到矩阵A的特征值λ
1
=2,λ
2
=λ
3
=-1. 由(2E—A)x=0得基础解系α
1
=(5,一2,9)
T
,即λ=2的特征向量是k
1
α
1
(k
1
≠0). 由(一E一A)x=0得基础解系α
2
=(1,一1,0)
T
,即λ=-1的特征向量是k
2
α
2
(k
2
≠0). 因为矩阵A只有2个线性无关的特征向量,所以A不能相似对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/AUu4777K
0
考研数学一
相关试题推荐
设f(x)可导,求下列函数的导数:
求下列极限:
由Y=lgx的图形作下列函数的图形:
设曲线方程为y=e-x(x≥0)(1)把曲线y=e-x,x轴,y轴和直线x=ε(ε>0)所谓平面图形绕x轴旋转一周得一旋转体,求此旋转体的体积V(ε),求满足的a;(2)在此曲线上找一点,使过该点的切线与两坐标轴所夹平面图形的面积最大,并求出该面积。
微分方程y"-2y’+2y=ex的通解为________.
考虑二元函数的下面4条性质:①f(x,y)在点(xo,yo)处连续;②f(x,y)在点(xo,yo)处的两个偏导数连续;③f(x,y)在点(xo,yo)处可微;④f(x,y)在点(xo,yo)处的两个偏导数存在.若用“P→Q”表示
设3阶矩阵A的特征值为1,2,2,E为3阶单位矩阵,则丨4A-1-E丨=_________.
设函数f(x)具有二阶连续导数,且f(x)>0,f’(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件是
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3Aα一2A2α.证明:矩阵B=(α,Aα,A4α)可逆;
随机试题
放射性物质中参与钾代谢过程的为()。
结合记账凭证核算和日记总账核算形式程序图表,说明逐笔记账型核算形式的特点。
A、视神经球内段B、视神经眶内段C、视神经管内段D、视神经颅内段E、视神经球内段筛板前部分属于无髓神经纤维的是()
乳腺癌侵犯表皮,表现为乳腺癌侵犯局部皮肤淋巴管,表现为
器官移植:排异反应
某村招商引资,广州来了一个叫李宁的人相中了该村的油桐资源,于是他决定投资1000万元建一个桐油加工厂,并在年前与村委签订了合同。准备过年后就正式投资建厂。但是过完年以后,当地一商人找到了村委,说他也想投资1600万元建一个桐油加工厂。村里考虑到他是本地人,
2013年3月末,金融机构人民币各项贷款余额65.76万亿元,同比增长14.9%,增速比上年同期低0.8个百分点。2013年3月末,主要金融机构及小型农村金融机构、外资银行人民币小微企业贷款余额11.78万亿元,同比增长13.5%,比全部企业
简述首长制的优缺点。
若有以下程序#include<stdio.h>#defineN4voidfun(inta[][N],intb[],intflag){inti,j;for(i=
A、Michaelhasbeenabroadfortwoyears,sohespeaksEnglishverywell.B、MichaelhasnotstudiedEnglishandhecannotspeaki
最新回复
(
0
)