首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次方程组(I) 有一个基础解系β1=(b11,b12,…,b1×2n)T,β2=(b21,b22,…,b2×2n)T,…,βn=(bn1,bn2,…,bn×2n)T. 证明A的行向量组是齐次方程组(Ⅱ) 的通解.
设齐次方程组(I) 有一个基础解系β1=(b11,b12,…,b1×2n)T,β2=(b21,b22,…,b2×2n)T,…,βn=(bn1,bn2,…,bn×2n)T. 证明A的行向量组是齐次方程组(Ⅱ) 的通解.
admin
2017-11-13
60
问题
设齐次方程组(I)
有一个基础解系β
1
=(b
11
,b
12
,…,b
1×2n
)
T
,β
2
=(b
21
,b
22
,…,b
2×2n
)
T
,…,β
n
=(b
n1
,b
n2
,…,b
n×2n
)
T
.
证明A的行向量组是齐次方程组(Ⅱ)
的通解.
选项
答案
分别记A和B为(I)和(Ⅱ)的系数矩阵. (I)的未知量有2n个,它的基础解系含有n个解,则r(A)=n,即A的行向量组α
1
,α
2
,…,α
n
线性无关. 由于β
1
,…,β
n
都是(I)的解,有AB
T
=(Aβ
1
,Aβ
2
,…,Aβ
n
)=0,转置得BA
T
=0,即Bα
i
T
=0,i=1,…,n.于是,α
1
,α
2
,…,α
n
是(Ⅱ)的n个线性无关的解.又因为r(B)=n,(Ⅱ)也有2n个未知量,2n—r(B)=n.所以α
1
,α
2
,…,α
n
是(Ⅱ)的一个基础解系.从而(Ⅱ)的通解为 c
1
α
1
+c
2
α
2
+…+c
n
α
n
,c
1
,c
2
,…,c
n
可取任意数.
解析
转载请注明原文地址:https://kaotiyun.com/show/AVr4777K
0
考研数学一
相关试题推荐
下列说法正确的是().
s1={1,一1,2),s2={一1,2,1),n=s1×s2={一5,一3,1),所求平面方程为π:一5(x一2)一3(y+2)+(z一3)=0,即π:一5x一3y+z+1=0.
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.
设A为m×n阶实矩阵,且r(A)=n.证明:ATA的特征值全大于零.
直线L的方向向量为[*]而平面π的法向量n=(1,1,0),故s=2n,所以s∥n,即直线L与平面π垂直.
设f(x,y)在全平面有连续偏导数,曲线积分在全平面与路径无关,且求f(x,y).
在下列区域D上,是否与路径无关是否存在原函数?若存在,求出原函数.(1)D:x2+y2>0;(2)D:y>0;(3)D:x<0.
设随机变量X满足|X|≤1,且,在{一1<X<1)发生的情况下,X在(一1,1)内任一子区间上的条件概率与该子区间长度成正比.求X的分布函数;
设随机变量X~U[一1,1],则随机变量U=arcsinX,V=arccosX的相关系数为().
随机试题
青少年好发的肿瘤为()。
Farmersareallowedtogrowsmallgardensoftheirownandtheyselltheirvegetables______theblackmarket.
如果取精液检查,应在检查前至少几天内不排精。
华支睾吸虫对人的危害主要是
关于胰岛素治疗,下列不妥的是下列哪一部位不可注射胰岛素
治疗成人呼吸窘迫综合征最有效的措施为()
《中华人民共和国广告法》规定,药品、医疗器械广告不得有的内容是()
设齐次线性方程组当方程组有非零解时,k值为:
某工业企业仅生产甲产品,采用品种法计算产品成本。3月初在产品直接材料成本130万元,直接人工成本18万元,制造费用10万元。3月份发生直接材料成本80万元,直接人工成本4871元,制造费用6万元。3月末甲产品完工100件,在产品200件。月末计算完工产品成
Translatingisacomplexandfascinatingtask.Infact,A.Richardshasclaimedthatitisprobablythemostcomplextypeofeve
最新回复
(
0
)