首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次方程组(I) 有一个基础解系β1=(b11,b12,…,b1×2n)T,β2=(b21,b22,…,b2×2n)T,…,βn=(bn1,bn2,…,bn×2n)T. 证明A的行向量组是齐次方程组(Ⅱ) 的通解.
设齐次方程组(I) 有一个基础解系β1=(b11,b12,…,b1×2n)T,β2=(b21,b22,…,b2×2n)T,…,βn=(bn1,bn2,…,bn×2n)T. 证明A的行向量组是齐次方程组(Ⅱ) 的通解.
admin
2017-11-13
84
问题
设齐次方程组(I)
有一个基础解系β
1
=(b
11
,b
12
,…,b
1×2n
)
T
,β
2
=(b
21
,b
22
,…,b
2×2n
)
T
,…,β
n
=(b
n1
,b
n2
,…,b
n×2n
)
T
.
证明A的行向量组是齐次方程组(Ⅱ)
的通解.
选项
答案
分别记A和B为(I)和(Ⅱ)的系数矩阵. (I)的未知量有2n个,它的基础解系含有n个解,则r(A)=n,即A的行向量组α
1
,α
2
,…,α
n
线性无关. 由于β
1
,…,β
n
都是(I)的解,有AB
T
=(Aβ
1
,Aβ
2
,…,Aβ
n
)=0,转置得BA
T
=0,即Bα
i
T
=0,i=1,…,n.于是,α
1
,α
2
,…,α
n
是(Ⅱ)的n个线性无关的解.又因为r(B)=n,(Ⅱ)也有2n个未知量,2n—r(B)=n.所以α
1
,α
2
,…,α
n
是(Ⅱ)的一个基础解系.从而(Ⅱ)的通解为 c
1
α
1
+c
2
α
2
+…+c
n
α
n
,c
1
,c
2
,…,c
n
可取任意数.
解析
转载请注明原文地址:https://kaotiyun.com/show/AVr4777K
0
考研数学一
相关试题推荐
[*]
[*]
设f(x)在[a,b]上连续,在(a,b)内二阶可导,连接点A(a,f(a)),B(b,f(b))的直线与曲线y=f(x)交于点C(c,f(c))(其中a
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:存在ξ∈(a,b),使得f’(ξ)+f(ξ)g’(ξ)=0.
设函数f(x,y)可微,又f(0,0)=0,fx’(0,0)=a,fy’(0,0)=b,且φ(t)=f(t,t2)],求φ’(0).
设函数f(x)由下列表达式确定,求出f(x)的连续区间和间断点,并研究f(x)在间断点处的左右极限.
求函数f(x,y,z)=x2+y2+z2在区域x2+y2+z2≤x+y+z内的平均值.
设随机变量X~U(0,1),在X=x(0<x<1)下,y~U(0,x).求X,Y的联合密度函数;
求幂级数的和函数.
设∮f(x)dx=arccosx+C,则等于()
随机试题
血管外破坏红细胞的主要场所是
预防小腿丹毒复发的措施是
下列关于投标文件补充、修改或撤回的表述,正确的是()。
在计算企业所得税应纳税所得额时,企业财务、会计处理办法与税收法律法规的规定不一致的,应当依照税收法律法规的规定计算。()
解不等式组:
1957年,由于对阶级斗争形势估计过于严重,发生的严重失误是“大跃进”运动。()
下列行政行为中属于抽象行政行为的是()。
A.ofB.fromC.receivePhrases:A.sendand【T1】___________e-mailB.sourcesranging【T2】___________vastdatab
19世纪末20世纪初,中国学者引进的教育思想主要是()
TheplightoftheagedhascometoberegardedasamajorsocialproblemintheUnitedStates.Inasense,theelderly(conventi
最新回复
(
0
)