首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次方程组(I) 有一个基础解系β1=(b11,b12,…,b1×2n)T,β2=(b21,b22,…,b2×2n)T,…,βn=(bn1,bn2,…,bn×2n)T. 证明A的行向量组是齐次方程组(Ⅱ) 的通解.
设齐次方程组(I) 有一个基础解系β1=(b11,b12,…,b1×2n)T,β2=(b21,b22,…,b2×2n)T,…,βn=(bn1,bn2,…,bn×2n)T. 证明A的行向量组是齐次方程组(Ⅱ) 的通解.
admin
2017-11-13
31
问题
设齐次方程组(I)
有一个基础解系β
1
=(b
11
,b
12
,…,b
1×2n
)
T
,β
2
=(b
21
,b
22
,…,b
2×2n
)
T
,…,β
n
=(b
n1
,b
n2
,…,b
n×2n
)
T
.
证明A的行向量组是齐次方程组(Ⅱ)
的通解.
选项
答案
分别记A和B为(I)和(Ⅱ)的系数矩阵. (I)的未知量有2n个,它的基础解系含有n个解,则r(A)=n,即A的行向量组α
1
,α
2
,…,α
n
线性无关. 由于β
1
,…,β
n
都是(I)的解,有AB
T
=(Aβ
1
,Aβ
2
,…,Aβ
n
)=0,转置得BA
T
=0,即Bα
i
T
=0,i=1,…,n.于是,α
1
,α
2
,…,α
n
是(Ⅱ)的n个线性无关的解.又因为r(B)=n,(Ⅱ)也有2n个未知量,2n—r(B)=n.所以α
1
,α
2
,…,α
n
是(Ⅱ)的一个基础解系.从而(Ⅱ)的通解为 c
1
α
1
+c
2
α
2
+…+c
n
α
n
,c
1
,c
2
,…,c
n
可取任意数.
解析
转载请注明原文地址:https://kaotiyun.com/show/AVr4777K
0
考研数学一
相关试题推荐
设f(x)连续,且对任意的x,y∈(一∞,+∞)有f(x+y)=f(x)+f(y)+2xy,f’(0)=1,求f(x).
设f(x)在区间[1,+∞)上单调减少且非负的连续函数,(1)证明:存在;(2)证明:反常积分同敛散.
顶角为60°,底圆半径为口的正圆锥形漏斗内盛满水,下接底圆半径为b(b<a)的圆柱形水桶(假设水桶的体积大于漏斗的体积),水由漏斗注入水桶,问当漏斗水平面下降速度与水桶水平面上升速度相等时,漏斗中水平面高度是多少?
设A,B为三阶矩阵,且A~B,且λ1=1,λ2=2为A的两个特征值,|B|=2,求
设二维随机变量(X,Y)的联合密度函数为求随机变量X,Y的边缘密度函数;
设随机变量X满足|X|≤1,且,在{一1<X<1)发生的情况下,X在(一1,1)内任一子区间上的条件概率与该子区间长度成正比.求P(X<0).
设,方程组AX=β有解但不唯一.求a;
随机地取两个正数x和y,这两个数中的每一个都不超过1,试求x与y之和不超过1,积不小于0.09的概率.
设曲面∑为z=,则∫∫∑(x2+y2+z2-3xyz)ds=________.
设Ω={(x,y,z)|x2+y2+z2≤1},则z2dxdydz=___________。
随机试题
里甲制
对于酶的叙述,恰当的是
病例对照研究方法探讨饮食与冠心病的关系时,经常出现的偏倚是以前瞻性队列研究方法探讨饮食与脑卒中的关系时,经常出现的偏倚是
下列合同中,应按财产租赁合同计税贴花的有()。
公有制包括全民所有制和集体所有制,其中家庭联产承包责任制属于典型的集体所有制形式。()
根据《中华人民共和国企业劳动争议处理条例》,我国目前处理劳动争议的机构不包括()。
亲生父母双方都有高血压的人,得高血压的几率是亲生父母都没有高血压的人的5倍。所以,高血压可能是一种遗传病。下列哪项为真,最能支持上述结论?
艺术不是象牙塔里的________,所谓的“为艺术而艺术”.说到底不过是唯美主义________的志向。自古以来,艺术就是与政治、经济、信仰等种种意识形态因素甚至流行时尚有着千丝万缕的关系。依次填入画横线部分最恰当的一项是()。
假设消费者均衡如图1-4所示,横纵轴分别表示商品X,Y的数量x,y,线段AB是预算线,V是无差异曲线,e点是消费者效用最大化均衡点,已知Px=2元,求:收入、PY、预算线方程、e点的MRSXY。[上海大学895现代经济学2012研]
Officialhealthadvicethatsaidhouseholdchoreshelpkeepyouactivehasbeenprovedwrongbytheresearch,whichshowsthatt
最新回复
(
0
)