首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3). 证明:(1)ξ1,ξ2∈(0,3),使得f’(ξ1)=f’(ξ2)=0. (2)存在ξ∈(0,3),使得f"(ξ)一2f’(ξ)=0.
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3). 证明:(1)ξ1,ξ2∈(0,3),使得f’(ξ1)=f’(ξ2)=0. (2)存在ξ∈(0,3),使得f"(ξ)一2f’(ξ)=0.
admin
2017-10-19
95
问题
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫
0
2
f(t)dt=f(2)+f(3).
证明:(1)ξ
1
,ξ
2
∈(0,3),使得f’(ξ
1
)=f’(ξ
2
)=0.
(2)存在ξ∈(0,3),使得f"(ξ)一2f’(ξ)=0.
选项
答案
(1)令F(x)=∫
0
x
f(t)dt,F’(x)=f(x), ∫
0
2
f(t)dt=F(2)一F(0)=F’(c)(2一0)一2f(c),其中0<c<2. 因为f(x)在[2,3]上连续,所以f(x)在[2,3]上取到最小值m和最大值M, [*] 由介值定理,存在x
0
∈[2,3],使得f(x
0
)=[*],即f(2)+f(3)=2f(x
0
), 于是f(0)=f(c)=f(x
0
), 由罗尔定理,存在[*],使得f’(ξ
1
)=f’(ξ
2
)=0. (2)令φ(x)=e
—2x
f’(x),φ(ξ
1
)=φ(ξ
2
)=0, 由罗尔定理,存在ξ∈(ξ,ξ)[*](0,3),使得φ’(ξ)=0, 而φ’(x)=e
—2x
[f"(x)一2f’(x)]且e
—2x
≠0,故f"(ξ)一2f’(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/ApH4777K
0
考研数学三
相关试题推荐
设u=f(x+y,x2+y2),其中f二阶连续可偏导,求
设z=yf(x2一y2),其中f可导,证明:
设u=,求du.
求由曲线y=4一x2与x轴围成的部分绕直线x=3旋转一周所成的几何体的体积.
设某工厂生产甲、乙两种产品,产量分别为x件和y件,利润函数为L(x,y)一6x=x2+16y一4y2一2(万元).已知生产这两种产品时,每件产品都要消耗原料2000kg,现有该原料12000kg,问两种产品各生产多少时总利润最大
设(1)求PTCP;(2)证明:D一BA—1BT为正定矩阵.
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+2α2+…+(n一1)αn—1=0,b=α1+α1+…+αn.(1)证明方程组AX=b有无穷多个解;(2)求方程组AX=b的通解.
设A为三阶矩阵,A的特征值为λ1=1,λ2=2,λ3=3,其对应的线性无关的特征向量分别为,求Anβ.
设y=y(x)二阶可导,且y’≠0,x=x(y)是y=y(x)的反函数.(1)将x=x(y)所满足的微分方程变换为y=y(x)所满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0,y’(0)=的解.
设α1,α2,…,αn(n≥2)线性无关,证明:当且仅当n为奇数时,α1+α2,α2+α3,…,αn+α1线性无关.
随机试题
管理者与被管理者分工的出现是在()
为了将MAC子层与物理层隔离,在IOOBASE-T标准中采用了________。
Conversationbeginsalmostthemomentwecomeintocontactwithanotherandcontinuesthroughouttheday【C1】______theaidofcel
去甲肾上腺素对心血管的作用主要是
室内消火栓系统在安装完成后应做试射试验,试射试验一般取有代表性的位置是()。
2015年7月,某企业出售一项专利技术,取得价款56万元,适用的营业税税率为5%。该专利技术原值为60万元,已摊销10万元。假定不考虑其他因素,出售该专利技术影响当期损益的金额为()万元。
一位研究者报告重复测量的方差分析中,F检验的结果是F(2,8)=4.29,根据此结果可知此研究有多少个被试?()
在中国第一次提出彻底的反帝反封建的民主革命纲领的是
下列关于线性表的叙述中,不正确的是()。
在考生文件夹下打开文档WORD.DOCX。某高校学生会计划举办一场“大学生网络创业交流会”的活动,拟邀请部分专家和老师给在校学生进行演讲。因此,校学生会外联部需制作一批邀请函,并分别递送给相关的专家和老师。请按如下要求,完成邀请函的制作。根据“Wor
最新回复
(
0
)