首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3). 证明:(1)ξ1,ξ2∈(0,3),使得f’(ξ1)=f’(ξ2)=0. (2)存在ξ∈(0,3),使得f"(ξ)一2f’(ξ)=0.
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3). 证明:(1)ξ1,ξ2∈(0,3),使得f’(ξ1)=f’(ξ2)=0. (2)存在ξ∈(0,3),使得f"(ξ)一2f’(ξ)=0.
admin
2017-10-19
42
问题
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫
0
2
f(t)dt=f(2)+f(3).
证明:(1)ξ
1
,ξ
2
∈(0,3),使得f’(ξ
1
)=f’(ξ
2
)=0.
(2)存在ξ∈(0,3),使得f"(ξ)一2f’(ξ)=0.
选项
答案
(1)令F(x)=∫
0
x
f(t)dt,F’(x)=f(x), ∫
0
2
f(t)dt=F(2)一F(0)=F’(c)(2一0)一2f(c),其中0<c<2. 因为f(x)在[2,3]上连续,所以f(x)在[2,3]上取到最小值m和最大值M, [*] 由介值定理,存在x
0
∈[2,3],使得f(x
0
)=[*],即f(2)+f(3)=2f(x
0
), 于是f(0)=f(c)=f(x
0
), 由罗尔定理,存在[*],使得f’(ξ
1
)=f’(ξ
2
)=0. (2)令φ(x)=e
—2x
f’(x),φ(ξ
1
)=φ(ξ
2
)=0, 由罗尔定理,存在ξ∈(ξ,ξ)[*](0,3),使得φ’(ξ)=0, 而φ’(x)=e
—2x
[f"(x)一2f’(x)]且e
—2x
≠0,故f"(ξ)一2f’(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/ApH4777K
0
考研数学三
相关试题推荐
求
f(x)=2x+3x一2,当x→0时().
设向量组α1,…,αn为两两正交的非零向量组,证明:α1,…,αn线性无关,举例说明逆命题不成立.
设A=(α1,α2,α3,α4)为4阶方阵,且AX=0的通解为X=k(1,1,2,一3)T,则α2由α1,α3,α4表示的表达式为__________.
设线性相关,则a=__________.
由方程确定的隐函数z=z(x,y)在点(1,0,一1)处的微分为dz=__________。
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵). 求:(1)二次型XTAX的标准形;(2)|E+A+A2+…+An|的值.
设,则α1,α2,α3经过施密特正交规范化后的向量组为
设A是三阶实对称矩阵,r(A)=1,A2一3A=0,设(1,1,一1)T为A的非零特征值对应的特征向量.(1)求A的特征值;(2)求矩阵A.
设α1,α2为齐次线性方程组AX=0的基础解系,β1,β2为非齐次线性方程组AX=b的两个不同解,则方程组AX=b的通解为().
随机试题
一侧动眼神经、面神经、副神经、舌下神经受损伤时分别有何症状?
中国革命的中心问题是()
下列关于婴儿夜惊的原因,表述错误的是()。
关于睾丸鞘膜,下列描述不正确的是
有关呆小症的说法错误的是
脑出血患者,45岁,入院2天,一直处于浅昏迷状态,颅内压继续增高,生命体征尚可,心肾功能良好,脑CT示小脑出血血肿200ml左右,侧脑室有扩大征象,采取何种措施最合适
对未完成义务教育的未成年犯和被采取强制性教育措施的未成年人应当进行义务教育,所需经费由()予以保障。
地球的外围是一层很厚的大气层,厚度大约在1000千米以上,但没有明显的界线。整个大气层随高度不同表现出不同的特点,分为对流层、平流层、中间层、电离层和散逸层。下列关于各层次大气层的说法正确的是()。
调整经济结构是加快转变经济发展方式的主攻方向,经济结构调整的重点是()
若有说明inta[][3]={0,0};,则不正确的叙述是()。
最新回复
(
0
)