设f(x)在[1,2]上连续,在(1,2)内可导,且f(x)≠0(1<x<2),又存在,证明: 存在ξ∈(1,2),使得

admin2016-09-30  28

问题 设f(x)在[1,2]上连续,在(1,2)内可导,且f(x)≠0(1<x<2),又存在,证明:
存在ξ∈(1,2),使得

选项

答案令h(x)=1nx,F(x)=∫1xf(t)dt,且F’(x)=f(x)≠0, 由柯西中值定理,存在ξ∈(1,2),使得 [*]

解析
转载请注明原文地址:https://kaotiyun.com/show/AyT4777K
0

最新回复(0)