首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)在[0,+∞)上有连续的导数,f(x)的值域为[0,+∞),且f’(x)>0,f(0)=0.又x=φ(y)为y=f(x)的反函数,对于常数a>0,b>0,试证明: ∫0af(x)dx+∫0bφ(y)dy
设y=f(x)在[0,+∞)上有连续的导数,f(x)的值域为[0,+∞),且f’(x)>0,f(0)=0.又x=φ(y)为y=f(x)的反函数,对于常数a>0,b>0,试证明: ∫0af(x)dx+∫0bφ(y)dy
admin
2017-10-23
111
问题
设y=f(x)在[0,+∞)上有连续的导数,f(x)的值域为[0,+∞),且f’(x)>0,f(0)=0.又x=φ(y)为y=f(x)的反函数,对于常数a>0,b>0,试证明:
∫
0
a
f(x)dx+∫
0
b
φ(y)dy
选项
答案
设g(a)=∫
0
a
f(x)dx+∫
0
b
φ(y)dy—ab,则g’(a)=f(a)一b.令g’(a)=0,得b=f(a),即a=φ(b).当0<a<φ(b)时,由f’(x)>0有f(a)<f[φ(b)]=b,从而知g’(a)<0;当0<φ(b)<a时有f[φ(6)]=b<f(a),从而知g’(a)>0,所以g[φ(b)]为最小值,即 g[φ(b)]=∫
0
φ(b)
f(x)dx+∫
0
b
φ(y)dy一φ(b)b. 由于 (g[φ(b)])’=f[φ(b)]φ’(b)+φ(b)一φ(b)一φ’(b)b =bφ’(b)+φ(b)一φ(6)一φ’(b)b≡0, 又 g[φ(0)]=∫
0
φ(0)
f(x)dx+∫
0
0
φ(Y)dy一φ(0)0=0(因φ(0)=0), 所以g[φ(b)]≡0,从而有 g(a)=∫
0
a
f(x)dx+∫
0
b
φ(y)dy—[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/AzX4777K
0
考研数学三
相关试题推荐
设f(x)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得
设f(x)为奇函数,且f’(1)=2,则=__________.
设f(x)在[a,b]上连续,证明:∫abf(x)dx=∫abf(a+b—x)dx.
设f(x)=a1ln(1+x)+a2ln(1+2x)+…+anln(1+nx),其中a1,a2,…,n为常数,且对一切x有|d(x)|≤|ex一1|.证明:|a1+2a2+…+nan|≤1.
讨论方程组的解的情况,在方程组有解时求出其解,其中a,b为常数.
确定常数a,b,c,使得=c.
求曲线y=3一|x2一1|与x轴围成的封闭区域绕直线y=3旋转所得的旋转体的体积.
已知f(x)是周期为5的连续函数,它在x=0的某邻域内满足关系式:f(1+sinx)一3f(1一sinx)=8x+α(x),其中α(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求y=f(x)在点(6,f(6))处的切线方程.
设一元函数f(x)有下列四条性质。①f(x)在[a,b]连续;②f(x)在[a,b]可积;③f(x)在[a,b]存在原函数;④f(x)在[a,b]可导。若用表示可由性质P推出性质Q,则有()
在“充分而非必要”、“必要而非充分”、“充分必要”三者中选择一个正确的填入下列空格内(1)函数f(x)在[a,b]上连续是f(x)在[a,b]上存在原函数的________条件;(2)函数f(x)在[a,b]上有界是f(x)在[a,b]上可积的____
随机试题
1985年8月,美国博雅公共关系公司与中国新闻发展公司签约成立了我国第一家公共关系专业公司,即____________。
莎士比亚四大悲剧是《哈姆雷特》、《奥赛罗》、《李尔王》和【】
男性,52岁。每日早晨5时左右胸骨后疼痛,查体:心脏不大,无杂音。发作时心电图呈STⅡ,Ⅲ,aVF抬高,约30min后恢复正常。其诊断最可能是
善于清胃而止呕的药物是
关于规章,下列哪一说法是正确的?
建设工程民事纠纷的处理方式主要包括()。
货币市场基金需披露()。
一位颇有名望的美国富商在散步时,遇到一个瘦弱的摆地摊卖旧书的年轻人,他缩着身子在寒风中啃着发霉的面包。富商怜悯地将8美元塞到年轻人手中,头也不回地走了。没走多远,富商忽又返回,从地摊上捡了两本旧书,并说:“对不起,我忘了取书。其实,您和我一样也是商人!”
不具备正式公文的法定权威性与行政约束力的是()。
(1)在名称为Form1的窗体上添加一个名称为Label1、标题为“添加项目:”的标签;添加一个名称为Textl的文本框,初始内容为空;添加一个名称为Combol的下拉式组合框,并通过属性窗口输入若干项目(不少于3个,内容任意);再添加两个命令按钮,名称分
最新回复
(
0
)