首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)在[0,+∞)上有连续的导数,f(x)的值域为[0,+∞),且f’(x)>0,f(0)=0.又x=φ(y)为y=f(x)的反函数,对于常数a>0,b>0,试证明: ∫0af(x)dx+∫0bφ(y)dy
设y=f(x)在[0,+∞)上有连续的导数,f(x)的值域为[0,+∞),且f’(x)>0,f(0)=0.又x=φ(y)为y=f(x)的反函数,对于常数a>0,b>0,试证明: ∫0af(x)dx+∫0bφ(y)dy
admin
2017-10-23
60
问题
设y=f(x)在[0,+∞)上有连续的导数,f(x)的值域为[0,+∞),且f’(x)>0,f(0)=0.又x=φ(y)为y=f(x)的反函数,对于常数a>0,b>0,试证明:
∫
0
a
f(x)dx+∫
0
b
φ(y)dy
选项
答案
设g(a)=∫
0
a
f(x)dx+∫
0
b
φ(y)dy—ab,则g’(a)=f(a)一b.令g’(a)=0,得b=f(a),即a=φ(b).当0<a<φ(b)时,由f’(x)>0有f(a)<f[φ(b)]=b,从而知g’(a)<0;当0<φ(b)<a时有f[φ(6)]=b<f(a),从而知g’(a)>0,所以g[φ(b)]为最小值,即 g[φ(b)]=∫
0
φ(b)
f(x)dx+∫
0
b
φ(y)dy一φ(b)b. 由于 (g[φ(b)])’=f[φ(b)]φ’(b)+φ(b)一φ(b)一φ’(b)b =bφ’(b)+φ(b)一φ(6)一φ’(b)b≡0, 又 g[φ(0)]=∫
0
φ(0)
f(x)dx+∫
0
0
φ(Y)dy一φ(0)0=0(因φ(0)=0), 所以g[φ(b)]≡0,从而有 g(a)=∫
0
a
f(x)dx+∫
0
b
φ(y)dy—[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/AzX4777K
0
考研数学三
相关试题推荐
确定常数a,b,c的值,使得当x→0时,ex(1+bx+cx2)=1+ax+o(x3).
设f(x)在[a,b]上连续,在(a,b)内可导(a>0).证明:存在ξ,η∈(a,b),使得
设X~U(0,2),Y=X2,求Y的概率密度函数.
=__________(其中a为常数).
设A=(α1,α2,…,αm),若对于任意不全为零的常数k1,k2,…,km,皆有k1α1+k2α2+…+kmαm≠0,则().
设f(x)∈C[0,1],f(x)>0.证明积分不等式:ln∫01f(x)dx≥∫01lnf(x)dx.
设曲线y=ax3+bx2+cx+d经过(一2,44),x=-2为驻点,(1,一10)为拐点,则a,b,c,d分别为________.
积分=()
试求心形线 x=acos3θ,y=asin3θ(0≤θ≤)与两坐标轴所围成的平面图形绕y轴旋转一周所得旋转体的体积.
设一元函数f(x)有下列四条性质.①f(x)在[a,b]连续②f(x)在[a,b]可积③f(x)在[a,b]存在原函数④f(x)在[a,b]可导若用“”表示可由性质P推出性质Q,则有()
随机试题
当前使用的IP地址是一个__________的二进制地址。()
从情感范畴来看,廉洁奉公是一种
“没有疾病和症状就是健康”的观点属于
患者男,40岁。护士听到病人说:“他们走,苹果衣服,游泳他得心,不要抓,狗叫”等。该症状属于
患者,女性,54岁。近半年来上腹部疼痛,尤以空腹和夜间为重,进食可缓解。可明确诊断的检查是
根据我国《证券法》的规定,股票依法发行后,由发行人经营与收益的变化所引致的投资风险,由( )负责。
义务教育阶段数学课程目标需从知识技能、_______、_______、_______等四个方面进行阐述.
小组活动的特点是()
ThepeoplewhorunFacebookarefuriousaboutanewmoviethatdepictstheexistenceofFace-book.They’reupsetbecausemuchof
Consumersarecreaturesofhabit:theybuythesameproductstimeandtimeagain,andsuchistheirfamiliaritywithbigbrands
最新回复
(
0
)