首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2015年)设矩阵A=,且A3=O. (Ⅰ)求a的值; (Ⅱ)若矩阵X满足X-XA2-AX+AXA2=E,其中E为3阶单位矩阵.求X.
(2015年)设矩阵A=,且A3=O. (Ⅰ)求a的值; (Ⅱ)若矩阵X满足X-XA2-AX+AXA2=E,其中E为3阶单位矩阵.求X.
admin
2018-07-30
75
问题
(2015年)设矩阵A=
,且A
3
=O.
(Ⅰ)求a的值;
(Ⅱ)若矩阵X满足X-XA
2
-AX+AXA
2
=E,其中E为3阶单位矩阵.求X.
选项
答案
(Ⅰ)由A
3
=O两端取行列式,得|A|
3
=0,从而得|A|=0,而|A|=a
3
.所以a=0. (Ⅱ)方法1:由已知的X-XA
2
-AX+AXA
2
=E,得 X(E-A
2
)-AX(E-A
2
)=E 即 (E-A)X(E-A
2
)=E 由(Ⅰ)知 [*] 由于E-A,E-A
2
均可逆,所以 X=(E-A)
-1
(E-A
2
)
-1
[*] 方法2:同解1一样可得 (E-A)X(E-A
2
)=E 所以 X=(E-A)
-1
(E-A
2
)
-1
=[(E-A
2
)(E-A)]
-1
=[E-A-A
2
+A
3
]
-1
=[E-A-A
2
]
-1
由(Ⅰ)知 E-A-A
2
=[*] 所以 X=(E-A-A
2
)
-1
=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/B9j4777K
0
考研数学二
相关试题推荐
A是二阶矩阵,有特征值λ1=1,λ2=2,f(x)=x2一3x+4,则f(A)=________.
设x与y均大于0且x≠y,证明
设α,β为四维非零的正交向量,且A=αβT,则A的线性无关的特征向量个数为().
设A>0,D是由曲线段y=Asinx(0≤x≤)及直线y=0,x=所围成的平面区域,V1,V2分别表示D绕x轴与绕y轴旋转所成旋转体的体积,若V1=V2,求A的值.
证明:对任意的x,y∈R且x≠y,有
求二元函数z=f(x,y)=x2y(4-x-y)在由x轴、y轴及x+y=6所围成的闭区域D上的最小值和最大值.
设曲线y=,过原点作切线,求此曲线、切线及x轴所围成的平面图形绕x轴旋转一周所成的旋转体的表面积.
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r()=r
设的特征向量,则a=_______,b=_______.
随机试题
A.青霉素B.甲氨蝶呤C.环孢素AD.泼尼松E.氨基葡萄糖上述药物中,治疗类风湿关节炎首选的改善病情抗风湿药是
衍生金融工具包括()
肾小管分泌钾离子的主要部位是【】
女性,56岁,高血压、糖尿病史3年,突发胸前区疼痛3h入院。心电图标准12导联是Ⅱ、Ⅲ及aVFST段抬高,病理性Q波,血压85/60mmHg,心率110次/分,心脏三尖瓣区可闻SM2~3/6返流样杂音,双肺呼吸音清,劲V怒张,肝肋下1cm。该例目前的诊断应
A.葡萄胎B.胎盘早剥C.前置胎盘D.前置血管E.破裂妊娠33周,反复无痛性阴道出血3次,最可能的诊断是
属于嘌呤类抗代谢的抗肿瘤药是()。
应急免疫是一种消极的债券组合管理策略。()
分析市场发展过程中变量的相互关系,寻因索果,解决“为什么”等问题的调查方式是()。
影视光源主要包括()。
Although"namingrights"haveproliferatedinAmericanhighereducationforthepastseveraldecades,thephenomenonhasrecentl
最新回复
(
0
)