首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=(x1-x2)2+(x1-x3)2+(x3-x2)2, (Ⅰ)求二次型f的秩; (Ⅱ)求正交变换Q,使二次型f化为标准形.
设二次型f(x1,x2,x3)=(x1-x2)2+(x1-x3)2+(x3-x2)2, (Ⅰ)求二次型f的秩; (Ⅱ)求正交变换Q,使二次型f化为标准形.
admin
2019-08-21
46
问题
设二次型f(x
1
,x
2
,x
3
)=(x
1
-x
2
)
2
+(x
1
-x
3
)
2
+(x
3
-x
2
)
2
,
(Ⅰ)求二次型f的秩;
(Ⅱ)求正交变换Q,使二次型f化为标准形.
选项
答案
(Ⅰ)由于[*],二次型对应的矩阵为A,则有 [*] 所以矩阵A的秩为2. (Ⅱ)记二次型f的矩阵为A,则 [*] [*] 可知λ
1
=0,λ
2
=λ
3
=3 又当λ
1
=0时,特征向量η
1
=(1,1,1)
T
,将η
1
单位化后得[*] 当λ
2
=λ
3
=3时,特征向量η
2
=(-1,1,0)
T
,η
3
=(-1,0,1)
T
,对η
2
,η
3
施行施密特正交化得 [*] 再将β
2
,β
3
单位化,得[*] 故正交变换矩阵[*],且有x=Qy,使[*]
解析
先写出二次型的矩阵,进而求矩阵的秩、特征值和单位正交的特征向量.
错例分析:本题有以下错误解法:
错误原因:变量替换
不可逆.
转载请注明原文地址:https://kaotiyun.com/show/eKN4777K
0
考研数学二
相关试题推荐
求函数z=x2+y2+2x+y在区域D={(x,y)|x2+y2≤1)上的最大值与最小值.
设f(x)在[0,+∞)内二阶可导,f(0)=-2,f’(0)=1,f"(x)≥0.证明:f(x)=0在(0,+∞)内有且仅有一个根.
设函数f(x)在(0,+∞)上二阶可导,且f’’(x)>0,记μn=f(n),n=1,2,…,又μ1<μ2,证明μn=+∞。
设平面区域D由直线x=3y,y=3x及x+y=8围成。计算
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n).二次型f(x1,x2,…,xn)=(1)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(X)
设f(x)在(-1,1)内二阶连续可导,且f"(x)≠0.证明:
设f(x)在(-1,1)内二阶连续可导,且f"(x)≠0.证明:对(-1,1)内任一点x≠0,存在唯一的θ(x)∈(0,1),使得f(x)=f(0)+xf’[θ(x)x];
设函数f(x)在(一∞,+∞)内二阶可导,且f(x)和f"(x)在(一∞,+∞)内有界,证明:f’(x)在(一∞,+∞)内有界.
已知二次型f(x1,x2,x3)=4x22一3x32+4x1x2—4x1x3+8x2x3.写出二次型f的矩阵表达式;
对n元实二次型f=xTAx,其中x=(x1,x2,…,xn)T。试证f在条件x12+x22+…+xn2=1下的最大值恰好为矩阵A的最大特征值。
随机试题
灯光开关旋转到这个位置时,全车灯光点亮。
甲公司是一家境内上市的集团公司,拟投资一大型项目,为此召开了项目投融资论证会。有关人员发言要点如下:项目部经理:为实施该项目,公司两年前就着手进行市场调研,并已支出100万元调研费。该项支出虽然是过去已经发生的成本,但在进行项目评价时,应该将其作
Therearethreekindsofgoals:short-term,medium-rangeandlong-termgoals.Short-termgoalsarethosethatusuallydealwith
马全身麻醉的首选药物是()。
感冒证见发热,无汗,鼻塞流涕,咽不红,咳嗽较重,应首选下列哪个方剂进行治疗
下列不属于财务评价涉及范围的价格体系的是()。
某工程建设项目中止施工240个日历天后打算恢复施工,在此情况下,应()。
心理现象分为()。
(),是我们党根据历史经验和对肃反斗争的深刻理解而提出的,是指导人民警察同刑事犯罪分子作斗争的一项重要政策。
若C,C1,C2,C3是任意常数,则以下函数中可以看作某个二阶微分方程的通解的是
最新回复
(
0
)