首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
由方程2y3一2y2+2xy+y—x2=0确定的函数y=y(x) ( )
由方程2y3一2y2+2xy+y—x2=0确定的函数y=y(x) ( )
admin
2020-06-20
46
问题
由方程2y
3
一2y
2
+2xy+y—x
2
=0确定的函数y=y(x) ( )
选项
A、没有驻点.
B、有驻点但不是极值点.
C、有驻点且为极小值点.
D、有驻点且为极大值点.
答案
C
解析
将所给方程两边对x求导数,y看成由此式确定的x的函数,则有
6y
2
y’一4yy’+2y+2xy’+y’一2x=0,
(6y
2
一4y+2x+1)y’+2(y—x)=0.
先考虑驻点,令y’=0,得y=x.再与原方程联立:
得2x
3
一2x
2
+2x
2
+x—x
2
=0,即x(2x
2
一x+1)=0.
由于2x
2
一x+1=0无实根,故得唯一实根x=0,相应地有y=0.在此点有y’=0.故不选A.
再看此点是否为极值点,求二阶导数.由
将x=0,y=0,y’=0代入,得y"(0)=2>0,所以该驻点为极小值点.选C.
转载请注明原文地址:https://kaotiyun.com/show/BGx4777K
0
考研数学三
相关试题推荐
设A为三阶非零矩阵,且AB=0,则Ax=0的通解是__________.
讨论曲线y=4lnx+k与y=4x+ln4x的交点个数.
设其导函数在x=0处连续,则λ的取值范围是_____________.
设A是n阶可逆矩阵,其每行元素之和都等于常数a.证明:(1)a≠0;(2)A-1的每行元素之和均为
(11年)设函数f(χ)在区间[0,1]上具有连续导数,f(0)=1,且满足f′(χ+y)dχdy=f(t)dχdy,其中Dt={(χ,y)|0≤y≤t-χ,0≤χ≤t)(0<t≤1).求f(χ)表达式.
设f(x),g(x)在区间[-a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数).利用上题的结论计算定积分
[2013年]当x→0时,用o(x)表示比x高阶的无穷小,则下列式子中错误的是().
[2005年]当a取下列哪个值时,函数f(x)=2x3-9x2+12x一a恰好有两个不同的零点?()
(1997年)设函数f(x)在[0,+∞)上连续.单调不减且f(0)≥0.试证函数在[0,+∞)上连续且单调不减(其中n>0)
设k>0,讨论常数k的取值,使f(x)=xlnx+k在其定义域内没有零点、有一个零点及两个零点.
随机试题
下列对于电路结构名词的叙述中,错误的是()。
所得额等于()
在以下四种以成本为中心的定价方法中,有利于企业开拓国际市场和竞争的方法是()
A.中央前回运动区全部损伤B.纹状体受损C.黑质病变D.小脑后叶受损痉挛性瘫痪是由于
女性,52岁,患类风湿性关节炎已12年,双膝、双髋关节严重的屈曲畸形,四肢肌肉萎缩,不能行走,整天坐轮椅或卧床,四肢关节无肿胀,个别关节有疼痛,ESR10mm/h,血尿常规正常,x线示双髋关节间隙消失,关节破坏融合。下列药物属于非甾体抗炎药的是
下列自动化仪表工程施工准备中的技术准备包括()等。下列对仪表设备及材料的开箱检查和外观检查,符合要求的有()。
假如你是一名青少年社会工作者,你所在的社区是一个外来务工人员比较集中的社区,当地有很多适龄少年儿童,主要是外来务工人员子女。他们无法继续接受教育,常常在外面结队游荡,有的还沾染上了不良习气。请针对当地的这一状况,为你所在社区的外来务工人员子女拟订一份社区服
关于运算符重载,下列表述中正确的是()。
ThepoliceconfirmedthatthepatientcamefromYorkshire,England.
Anthropologyisthe【S1】______ofhumanbeingsascreaturesofsociety.Itfastensitsattentionuponthosephysicalcharacteristi
最新回复
(
0
)